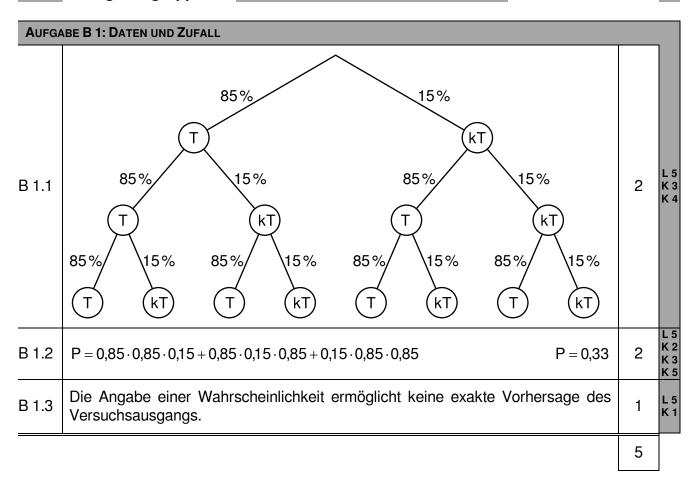
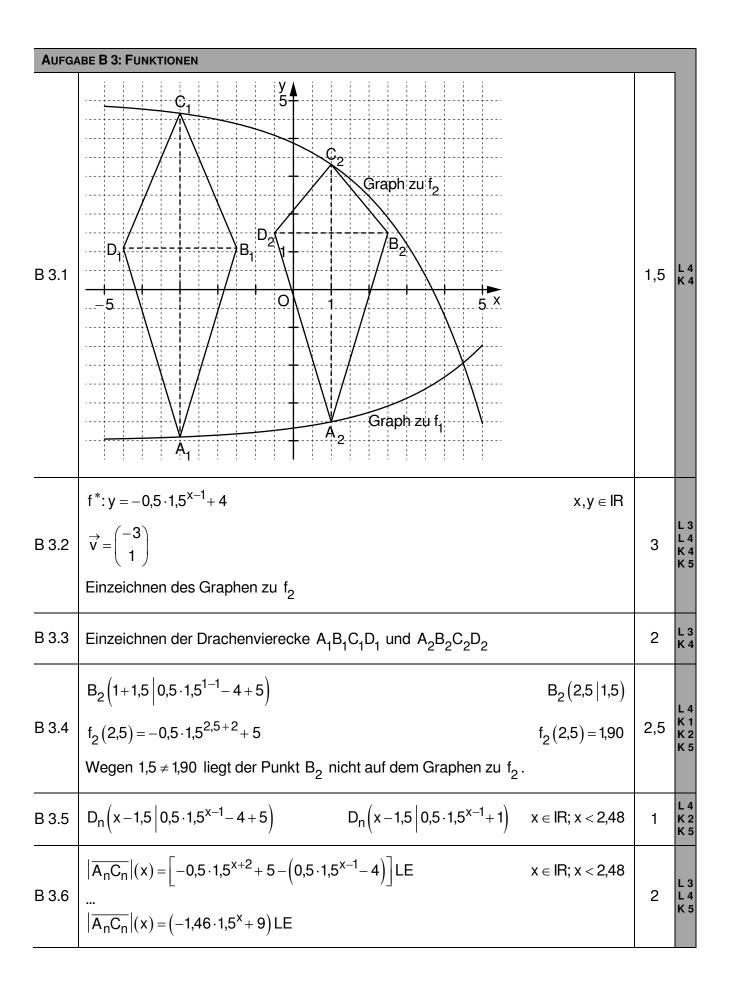
Lösungsmuster und Bewertung

Abschlussprüfung 2025

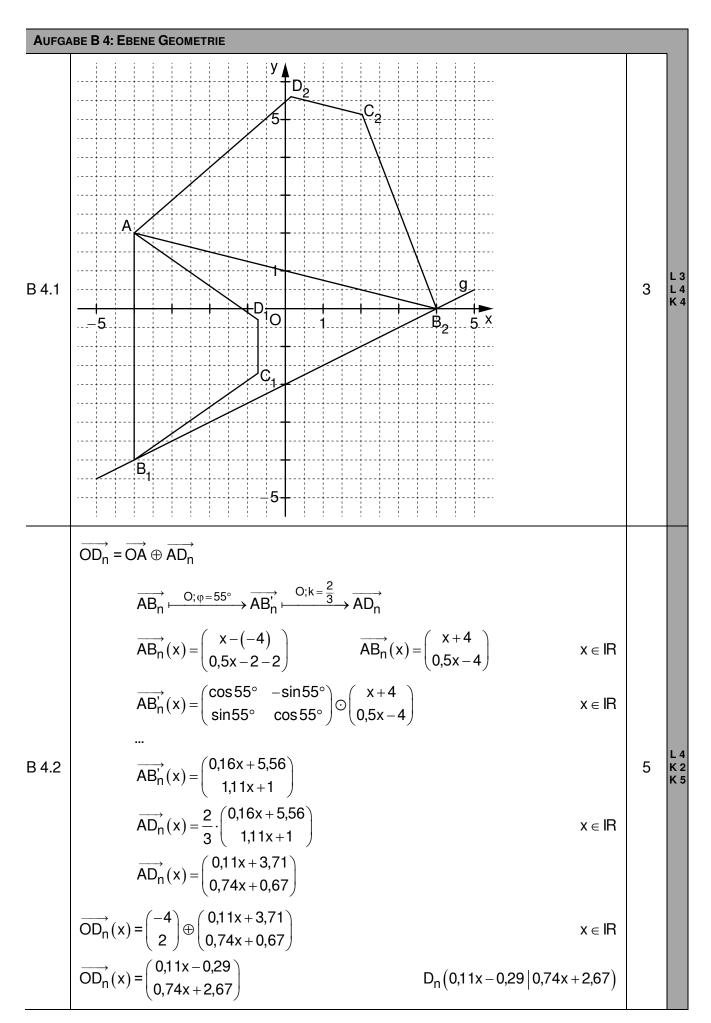

an den Realschulen in Bayern

Mathematik I


	Aufgabengruppe A Nachtermi	n	
AUFG	ABE A 1: RAUMGEOMETRIE		
A 1	Sinnvolle Modellierung, z. B.: • Breite der Person bzw. Radius der Säule in Wirklichkeit: 0,4 m • Folglich gilt für die Höhe h einer Säule:	4	L 2 K 3 K 5
A UFG/	ABE A 2: DATEN UND ZUFALL		
A 2.1	$\frac{1}{8}$	1	L 5 K 3 K 5
A 2.2	Produkte mit einem Produktwert kleiner als vier: 1·1; 2·1; 1·2; 3·1; 1·3 $P = 5 \cdot \frac{1}{8} \cdot \frac{1}{8}$ $P = \frac{5}{64}$	2	L 5 K 2 K 3 K 5
AUFG	ABE A 3: FUNKTIONEN		
А3	Es gilt: $y_{C_2} = y_B$. $0.5 \cdot (x-2)^3 - 3 = -3$ $x \in IR; x > -1$ $x \in IR; x > -1$ $L = \{2\}$	2,5	L 3 L 4 K 2 K 5
AUFG	ABE A 4: RAUMGEOMETRIE		
A 4	Felicitas hat die Strecken \overline{AM} und \overline{MC} fälschlicherweise im Verhältnis $ \overline{AM} : \overline{MC} =1:2$ gezeichnet. In der Zeichnung hat der Winkel P ₁ CA das Maß 30° und nicht der Winkel P ₁ MA .	2	L 3 K 6
		11 5	

11,5

6,5



AUFGA	BE B 2: RAUMGEOMETRIE		
B 2.1	$\cos \varphi = \frac{4 \text{ cm}}{\left \overline{C_n D}\right } \qquad \left \overline{C_n D}\right (\varphi) = \frac{4}{\cos \varphi} \text{ cm} \qquad \qquad \varphi \in \left]0^\circ; 90^\circ \right[$ $\tan \varphi = \frac{\left \overline{MC_n}\right }{4 \text{ cm}} \qquad \left \overline{MC_n}\right (\varphi) = 4 \cdot \tan \varphi \text{ cm} \qquad \qquad \varphi \in \left]0^\circ; 90^\circ \right[$	2	L 3
	$tan\phi = \frac{\left \overline{MC_n}\right }{4 \text{ cm}} \qquad \left \overline{MC_n}\right (\phi) = 4 \cdot tan\phi \text{ cm} \qquad \phi \in \left]0^\circ;90^\circ\right[$	2	K 4 K 5
B 2.2	$\begin{split} O = & \left \overline{MC_n} \right \cdot \pi \cdot \left \overline{C_n D} \right + \frac{1}{2} \cdot 4 \cdot \left \overline{MB_n} \right ^2 \cdot \pi + \left \overline{MC_n} \right ^2 \cdot \pi - \left \overline{MB_n} \right ^2 \cdot \pi \\ & F \ddot{u} r \ \phi \in \left] 0^\circ; 90^\circ \right[\ gilt: \\ & \left \overline{MB_n} \right (\phi) = \frac{1}{2} \cdot 4 \cdot tan\phi \ cm \\ & O(\phi) = \left[4 \cdot tan\phi \cdot \pi \cdot \frac{4}{\cos\phi} + \frac{1}{2} \cdot 4 \cdot (2 \cdot tan\phi)^2 \cdot \pi + (4 \cdot tan\phi)^2 \cdot \pi - (2 \cdot tan\phi)^2 \cdot \pi \right] cm^2 \\ & \\ & O(\phi) = \left(20\pi \cdot tan^2 \phi + 16\pi \cdot \frac{tan\phi}{\cos\phi} \right) cm^2 \end{split}$	3,5	L 3 L 4 K 2 K 5
B 2.3	$O(50^{\circ}) = \left(20\pi \cdot \tan^2 50^{\circ} + 16\pi \cdot \frac{\tan 50^{\circ}}{\cos 50^{\circ}}\right) \text{cm}^2$ $O(50^{\circ}) = 182,43 \text{ cm}^2$	1	L 2 K 5

B 3.7 Allerdings gilt: $ \overline{A_nC_n} (x) = \underbrace{\left(-1,46\cdot 1,5^x + 9\right)}_{<9} LE < 10 LE (x \in IR; x < 2,48).$ Folglich gibt es keine Raute $A_0B_0C_0D_0$.		In einer Raute $A_0B_0C_0D_0$ müsste gelten: $ \overline{A_0C_0} = 2.5 LE = 10 LE$.		
Folglich gibt es keine Raute $A_0B_0C_0D_0$.	B 3.7	Allerdings gilt: $ \overline{A_nC_n} (x) = \underbrace{\left(\underbrace{-1,46\cdot 1,5^x + 9}_{<9}\right)} LE < 10 LE (x \in IR; x < 2,48).$	2,5	L 2 L 4 K 1 K 5
		Folglich gibt es keine Raute $A_0B_0C_0D_0$.		

14,5

B 4.3	Es gilt: $\overrightarrow{AB_0} \perp g$.			
	$ \begin{pmatrix} x+4 \\ 0.5x-4 \end{pmatrix} \odot \begin{pmatrix} 1 \\ 0.5 \end{pmatrix} = 0 $	$x \in IR$	2,5	L 3 L 4 K 2 K 5
	 ⇔ x = −1,6	$L = \{-1,6\}$		
	Es gilt: $y_{B_3} = y_A$.			
	0.5x - 2 = 2	$x \in IR$	_	L 2 L 3
B 4.4	 ⇔ x = 8	$L = \{8\}$	2	L 4 K 2 K 5
	$ \overline{AB_3} = [8-(-4)]LE$	$ \overline{AB_3} = 12 LE$		
B 4.5	$A_{AB_3C_3D_3} = \frac{1}{2} \cdot \left(\left \overline{AB_3} \right + \left \overline{C_3D_3} \right \right) \cdot d \left(D_3; AB_3 \right)$			
	$\left \overline{C_3D_3}\right = \left \overline{AB_3}\right - 2 \cdot \left(x_{D_3} - x_A\right) LE$			
	$\cos 55^\circ = \frac{x_{D_3} - x_A}{\frac{2}{3} \cdot 12}$	$x_{D_3} - x_A = 4,59$	1	L 2 K 2
	$\left \overline{C_3D_3}\right = (12 - 2 \cdot 4,59) LE$	$\left \overline{C_3D_3}\right = 2,82 LE$	4	K 5
	$\sin 55^{\circ} = \frac{d(D_3; AB_3)}{\frac{2}{3} \cdot 12 LE}$	$d(D_3; AB_3) = 6,55 LE$		
	$A_{AB_3C_3D_3} = \frac{1}{2} \cdot (12 + 2,82) \cdot 6,55 FE$	$A_{AB_3C_3D_3} = 48,54 FE$		
			16,5	

Hinweis: Bei einigen Teilaufgaben sind auch andere Lösungswege möglich. Für richtige andere Lösungen gelten die jeweils angegebenen Punkte entsprechend; die Anzahl der Punkte bei den einzelnen Teilaufgaben darf jedoch nicht verändert werden. Insbesondere sind Lösungswege, bei denen der (grafikfähige) Taschenrechner verwendet wird, entsprechend ihrer Dokumentation bzw. ihrer Nachvollziehbarkeit zu bepunkten.

Bei der Korrektur ist zu beachten, dass die Vervielfältigung der Lösungsvorlage zu Verzerrungen der Zeichnungen führen kann.