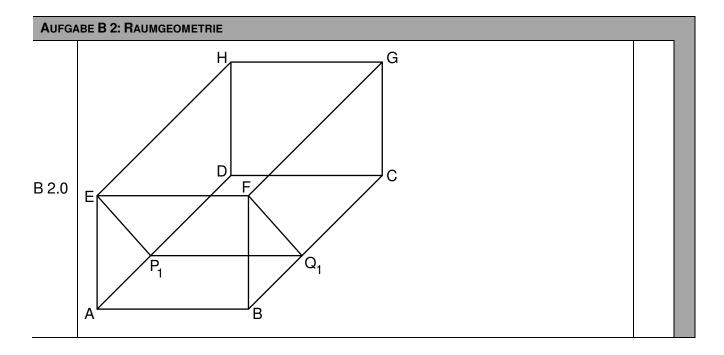
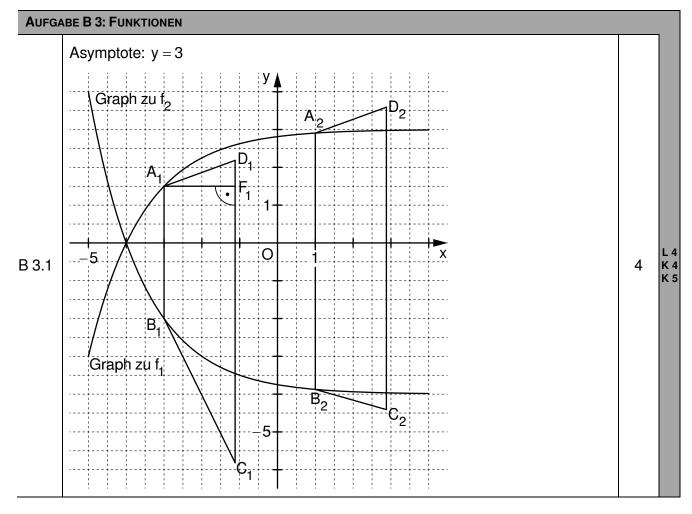
Lösungsmuster und Bewertung

Abschlussprüfung 2025

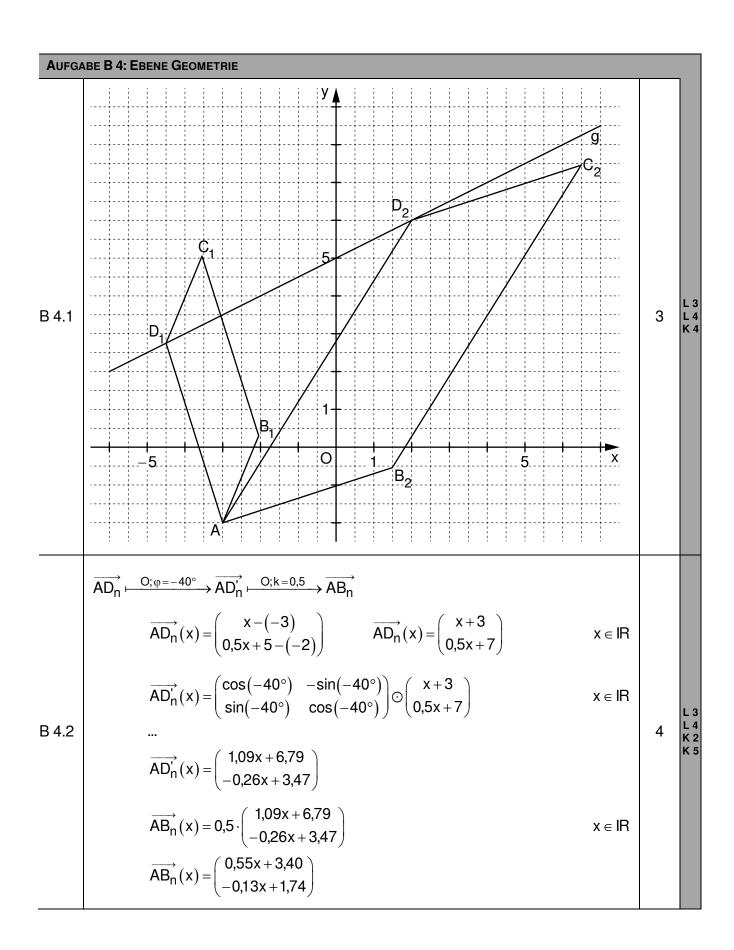
an den Realschulen in Bayern


Mathematik I

	Aufgabengruppe A		Haupttermi	n	
AUFGA	ABE A 1: DATEN UND ZUFALL				
A 1.1	$P = \frac{1}{25}$			1	L 5 K 3 K 5
A 1.2	$P = \frac{1}{5} \cdot \frac{4}{5} \cdot 2$		$P = \frac{8}{25}$	1,5	L 5 K 3 K 5
A UFG/	ABE A 2: RAUMGEOMETRIE				
A 2.0	C_1 B_1 B_2 C_2 A				
A 2.1	Einzeichnen des Dreiecks AB ₂ C ₂			1	L 3 K 4
A 2.2]0;4[1	L 3 K 4 K 5
A 2.3	$O = 2 \cdot a \cdot \pi \cdot \left \overline{AC_n} \right $ $\sin \phi = \frac{a}{4 \text{ cm}}$ $O(\phi) = 2 \cdot 4 \cdot \sin \phi \cdot \pi \cdot 4 \text{ cm}^2$	$a(\varphi) = 4 \cdot \sin\varphi \text{ cm}$ $O(\varphi) = 32 \cdot \pi \cdot \sin\varphi \text{ cm}^2$	φ ∈]0°;90°[φ ∈]0°;90°[2,5	L 2 L 3 L 4 K 2 K 5
A 2.4	$16 \cdot \pi = 32 \cdot \pi \cdot \sin \phi$ $\Leftrightarrow \qquad \phi = 30^{\circ}$		$\phi \in \left]0^{\circ};90^{\circ}\right[$ $L = \left\{30^{\circ}\right\}$	1,5	L 2 L 4 K 5


AUFGABE A 3: EBENE GEOMETRIE					
A 3.1	Da der Punkt S der Schwerpunkt des Dreiecks ABC ist, muss die Strecke $\overline{\rm BM}$ eine Seitenhalbierende sein.		1	L 3 K 1	
A 3.2	tan∢CBM = $\frac{0.5 \cdot 8\sqrt{3}}{4}$	tan∢CBM = √3	∢CBM = 60°	2	L 2 K 5
-				11,5	

Aufgabengruppe B Haupttermin


AUFGA	ABE B 1: DATEN UND ZUFALL		
B 1.1	$1-\frac{70+p}{100}$	1	L 5 K 3
B 1.2	$\frac{p}{100} \cdot \frac{50}{100} = \frac{10}{100}$ $p \in IR^+$ $p\% = 20\%$	1,5	L 5 K 2 K 5
B 1.3	$\frac{40}{100} \cdot \frac{50}{100} + \frac{40}{100} \cdot \frac{30}{100} + \frac{30}{100} \cdot \frac{50}{100} + \frac{30}{100} \cdot \frac{30}{100} = \frac{56}{100}$ Wegen $\frac{56}{100} > 50\%$ trifft Sebastians Vermutung zu.	2,5	L 1 L 5 K 1 K 3 K 5
		5	

B 2.1	Einzeichnen des Prismas AP ₁ EBQ ₁ F		1	L 3 K 4	
B 2.2	$V = \frac{1}{2} \cdot \left \overline{AP_n} \right \cdot \left \overline{AE} \right \cdot \left \overline{AB} \right $				
	$\tan \varphi = \frac{\left \overline{AP_n}\right }{3 \text{ cm}}$	$ \overline{AP_n} (\phi) = 3 \cdot \tan \phi \text{ cm}$	0° < φ ≤ ∢AED	2	L 3 L 4 K 2 K 5
	$V(\varphi) = \frac{1}{2} \cdot 3 \cdot \tan \varphi \cdot 3 \cdot 4 \text{ cm}^3$	$V(\phi) = 18 \cdot \tan \phi \text{ cm}^3$	$0^{\circ} < \phi \le \not \subset AED$		
	50 = 18·tanφ		0° < φ ≤ ∢AED		L 2
B 2.3	 ⇔ φ = 70,20°		0° < φ ≤ ∢AED $L = \{70,20^{\circ}\}$	1,5	L 4 K 5
	Das Prisma AP_0EBQ_0F mit dem größten Volumen erhält man für $P_0=D$.				
B 2.4	Für dieses Prisma gilt: $V_{AP_0EBQ_0F} = 0.5 \cdot V_{ABCDEFGH}$.		2	L 3 K 1	
	Folglich kann es kein solches Prisma AP ₃ EBQ ₃ F geben.				
				6,5	

B 3.2	Einzeichnen der Trapeze A ₁ B ₁ C ₁ D ₁ und A ₂ B ₂ C ₂ D ₂		2	L 3 K 4
B 3.3	Einzeichnen der Strecke $\overline{A_1F_1}$			L 2 L 3
	$\cos(110^{\circ} - 90^{\circ}) = \frac{ \overline{A_n F_n} }{2 LE}$	$ \overline{A_nF_n} $ = 1,88 LE	2	K 2 K 4 K 5
	$ \overline{A_nB_n} (x) = [-3 \cdot 0.5^{x+4} + 3 - (2 \cdot 0.5^{x+3} - 4)]LE$	$x \in IR; x > -4$		L 3
B 3.4	$ \overline{A_nB_n} (x) = (-3.5 \cdot 0.5^{x+3} + 7) LE$		2	L 4 K 5
	Für das Trapez $A_3B_3C_3D_3$ gilt: $ \overline{A_3B_3} = \overline{C_nD_n} - 2 \cdot \overline{D_nF_n} $.			
	$\sin(110^{\circ} - 90^{\circ}) = \frac{ \overline{D_n F_n} }{2 LE}$	$\left \overline{D_nF_n}\right = 0.68 LE$		L 2
B 3.5	$ \overline{A_3B_3} = (8-2\cdot0.68)$ LE	$\left \overline{A_3B_3}\right = 6,64LE$	4	L 3 L 4 K 2 K 5
	$6,64 = -3,5 \cdot 0,5^{X+3} + 7$	$x \in IR; x > -4$		KJ
	⇒ x = 0,28	$L = \{0,28\}$		
B 3.6	$A(x) = \frac{1}{2} \cdot \left(\underbrace{-3.5 \cdot 0.5^{x+3} + 7}_{<7} + 8 \right) \cdot 1.88 \text{FE} < 14.1 \text{FE}$	$x \in IR; x > -4$	2	L 2 L 4 K 1 K 5
			16	

	Es gilt: $m_{AB_3} = m_g$.		
B 4.3	$\frac{-0.13x + 1.74}{0.55x + 3.40} = 0.5$ $x \in IR$	3	L 3 L 4 K 2
	$\Leftrightarrow \qquad x = 0.10 \qquad \qquad L = \{0.10\}$		K 2 K 5
	$D_3(0,10 0,5\cdot0,10+5)$ $D_3(0,10 5,05)$		
	Es gilt: $\overrightarrow{AD_0} \perp g$.		
B 4.4	$ \begin{pmatrix} x+3 \\ 0,5x+7 \end{pmatrix} \odot \begin{pmatrix} 1 \\ 0,5 \end{pmatrix} = 0 $ $x \in \mathbb{R}$	2,5	L 3 L 4 K 2 K 5
	$\Leftrightarrow \qquad x = -5,2 \qquad \qquad L = \{-5,2\}$		
B 4.5	Da $ \overline{AD_0} $ minimal ist, ist wegen $ \overline{AB_0} = 0.5 \cdot \overline{AD_0} $ auch $ \overline{AB_0} $ minimal.	2	L 2 L 3 K 1
	Folglich ist $A_{AB_0C_0D_0}$ minimal.		
		14,5	

Hinweis: Bei einigen Teilaufgaben sind auch andere Lösungswege möglich. Für richtige andere Lösungen gelten die jeweils angegebenen Punkte entsprechend; die Anzahl der Punkte bei den einzelnen Teilaufgaben darf jedoch nicht verändert werden. Insbesondere sind Lösungswege, bei denen der (grafikfähige) Taschenrechner verwendet wird, entsprechend ihrer Dokumentation bzw. ihrer Nachvollziehbarkeit zu bepunkten.

Bei der Korrektur ist zu beachten, dass die Vervielfältigung der Lösungsvorlage zu Verzerrungen der Zeichnungen führen kann.