Lösungsmuster und Bewertung

Abschlussprüfung 2021

an den Realschulen in Bayern

Mathematik I

Aufgabengruppe A

Nachtermin

AUFGABE **A** 1: FUNKTIONEN

A 1.1
$$218 = 4500 \cdot k^2$$

 $k \in IR^{\scriptscriptstyle +}$

$$IL = \{0,22\}$$

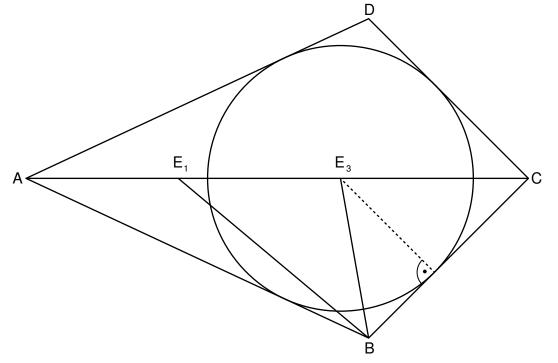
2

Folglich gilt:
$$y = 4500 \cdot 0.22^{x}$$
 ($\mathbb{G} = \mathbb{IR}_{0}^{+} \times \mathbb{IR}_{0}^{+}$).

A 1.2 Die Stromstärke verringert sich pro Sekunde um 78%.

A 1.3 Stromstärke der ersten Spule nach 3 s (lt. Tabelle): 48 mA

$$48 = y_0 \cdot 0,25^3$$


$$y_0 = 3072$$

2

Die Stromstärke beträgt in diesem Moment 3072 mA.

AUFGABE A 2: EBENE GEOMETRIE

A 2.0

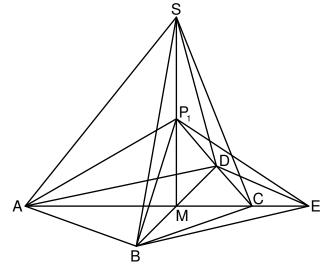
A 2.1 Einzeichnen der Strecke BE,

$$\frac{BE_n}{\sin \angle BAC} = \frac{AB}{\sin \angle AE_nB}$$

3

$$\frac{\overline{BE_n}}{\sin 25^{\circ}} = \frac{10 \text{ cm}}{\sin(180^{\circ} - (\phi + 25^{\circ}))}$$

 $\angle BAC = 0.5 \cdot 50^{\circ}$


$$\overline{\mathsf{BE}_{\mathsf{n}}}(\varphi) = \frac{4,23}{\sin(\varphi + 25^{\circ})} \, \mathsf{cm} \qquad \varphi \in \left] 0^{\circ}; 110^{\circ} \right]$$

			,	
A 2.2	$A_{ABE_2} = 0.5 \cdot \overline{AB} \cdot \overline{BE_2} \cdot \sin \angle E_2BA$			
	$\angle E_2BA = \angle BAC$	$\angle E_2BA = 25^\circ$		L 2
	$\overline{BE}_2 = \frac{4,23}{\sin(25^\circ + 25^\circ)} \text{ cm}$	$\overline{BE_2} = 5,52 \text{ cm}$	2	L 2 L 3 K 2 K 5
	$A_{ABE_2} = 0.5 \cdot 10 \cdot 5.52 \cdot \sin 25^{\circ} \text{ cm}^2$	$A_{ABE_2} = 11,66 \text{ cm}^2$		
A 2.3	Einzeichnen des Punktes E ₃ sowie des Inkreises			
	$\sin \ll CBE_3 = \frac{r}{\overline{BE_3}}$			1 2
	∢CBE ₃ = 0,5 · 110°	∢CBE ₃ = 55°	4	L 2 L 3 K 2 K 4 K 5
	$\overline{BE_3} = \frac{4,23}{\sin(55^\circ + 25^\circ)} cm$	$\overline{BE_3} = 4,30 \ cm$		K 4 K 5

AUFGABE A 3: RAUMGEOMETRIE

 $\sin 55^{\circ} = \frac{r}{4,30 \text{ cm}}$

A 3.0

2

A 3.2
$$V = \frac{1}{3} \cdot \frac{1}{2} \cdot \overline{AE} \cdot \overline{BD} \cdot \overline{MP_n}$$

$$\tan \varphi = \frac{\overline{MP_n}}{4 \text{ cm}}$$

$$\overline{MP_n}(\phi) = 4 \cdot \tan \phi \text{ cm}$$
 $\phi \in \left]0^\circ; 51,34^\circ\right]$

$$\phi\in\left]\,0^\circ;\,51,\!34^\circ\right]$$

r = 3,52 cm

2

$$V(\varphi) = \frac{1}{3} \cdot \frac{1}{2} \cdot 7.5 \cdot 6 \cdot 4 \cdot \tan\varphi \text{ cm}^3$$
 $V(\varphi) = 30 \cdot \tan\varphi \text{ cm}^3$

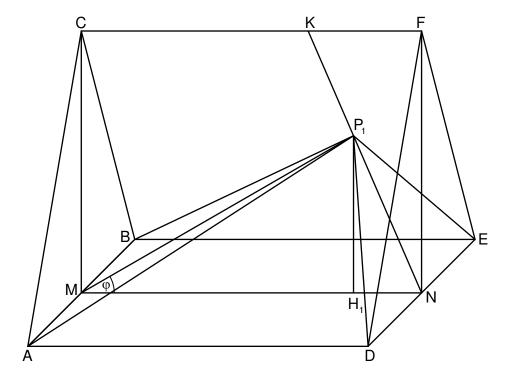
$$V(\varphi) = 30 \cdot \tan \varphi \text{ cm}^3$$

$$\phi\in\left]0^\circ;51,\!34^\circ\right]$$

A 3.3
$$\frac{1}{3} \cdot \frac{1}{2} \cdot 6 \cdot 6 \cdot 5 = 30 \cdot \tan \varphi$$

$$\Leftrightarrow \qquad \phi = 45^{\circ}$$

$$|L = \{45^{\circ}\}$$


Aufgabengruppe B **Nachtermin** AUFGABE B 1: FUNKTIONEN B 1.1 Wertemenge von f_1 : $\{y \mid y > -2\}$ Graph zu f_2 Graph zu f 2

B 1.2	$ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ 2 \cdot (0,2 \cdot 2^{x-1} - 2) \end{pmatrix} $	$G = IR \times IR$; $x \in IR$		
	$\Rightarrow y' = 0,4 \cdot 2^{x'-1} - 4$	$G = IR \times IR$; $x' \in IR$	3	L 4 K 4 K 5
	$y'' = 0.4 \cdot 2^{x''-2} + 3$ $f_2: y = 0.4 \cdot 2^{x-2} + 3$	$G = IR \times IR$		
	Einzeichnen des Graphen zu f ₂			
B 1.3	3 Einzeichnen der Dreiecke A ₁ B ₁ C ₁ und A ₂ B ₂ C ₂			L 3 K 4
B 1.4	$\overrightarrow{A_nB_n}(x) = \begin{pmatrix} x+3-x \\ -1-(0,2\cdot 2^{x-1}-2) \end{pmatrix}$	$\overrightarrow{A_nB_n}(x) = \begin{pmatrix} 3 \\ -0.2 \cdot 2^{x-1} + 1 \end{pmatrix} \qquad x \in IR$		
	$C_n(x+1 0,4\cdot 2^{x+1-2}+3)$	$C_n\left(x+1\Big 0,\!4\cdot 2^{x-1}\!+3\right) \hspace{1cm} x\in IR$	3	L 3 L 4
	$\overrightarrow{A_nC_n}(x) = \begin{pmatrix} x+1-x \\ 0.4 \cdot 2^{x-1} + 3 - (0.2 \cdot 2^{x-1} - 2) \end{pmatrix}$	$\overrightarrow{A_nC_n}(x) = \begin{pmatrix} 1 \\ 0.2 \cdot 2^{x-1} + 5 \end{pmatrix}$ $x \in \mathbb{R}$		ζ 3
B 1.5	$A(x) = \frac{1}{2} \cdot \begin{vmatrix} 3 & 1 \\ -0.2 \cdot 2^{x-1} + 1 & 0.2 \cdot 2^{x-1} + 5 \end{vmatrix} F$	E x∈ IR	2	L 3
	$A(x) = \underbrace{\left(\underbrace{0.4 \cdot 2^{x-1}}_{>0} + 7\right)}_{>7} FE$		3	K 1 K 5
B 1.6	$0,2\cdot 2^{x-1}-2=-1$	x ∈ I R		
	 ⇔ x = 3,32	$IL = \{3,32\}$		L 2
	$\overrightarrow{A_3C_3} = \begin{pmatrix} 1 \\ 0.2 \cdot 2^{3.32-1} + 5 \end{pmatrix}$	$\overrightarrow{A_3C_3} = \begin{pmatrix} 1 \\ 6,00 \end{pmatrix}$	4	L 4 K 2 K 5
	$\tan \ll B_3 A_3 C_3 = \frac{6,00}{1}$	$\angle B_3 A_3 C_3 = 80,54^{\circ}$		
			17	

AUFGABE B 2: RAUMGEOMETRIE

B 2.1
$$\overline{MC} = \frac{8}{2} \cdot \sqrt{3} \text{ cm}$$

 $\overline{MC} = 6,93 \text{ cm}$

$$tan \ll NKF = \frac{6,93}{3}$$

B 2.3 Einzeichnen der Strecke
$$\left[MP_{\scriptscriptstyle 1} \right]$$
 und des Dreiecks $AP_{\scriptscriptstyle 1}B$

2

3

B 2.4
$$\frac{\overline{MP_n}}{\sin 66,59^{\circ}} = \frac{9 \text{ cm}}{\sin(180^{\circ} - (66,59^{\circ} + \phi))}$$

$$\phi \in \left]0^{\circ};49,11^{\circ}\right]$$

$$\overline{MP_n}(\phi) = \frac{8,26}{sin(\phi + 66,59^\circ)} cm$$

L3 4 L4 K1 D]. K5

Wegen
$$sin(\phi+66,59^\circ) \le 1(\phi \in]0^\circ;49,11^\circ])$$
 gilt für die Strecken [MP_n]:

 $\overline{MP_n} \geqq 8,\!26 \ cm$.

Folglich gilt: $A \ge 0.5 \cdot 8 \cdot 8.26 \text{ cm}^2$, also $A \ge 33.04 \text{ cm}^2$.

	3.2.5 Einzeichnen der Pyramide ADEBP ₁ und ihrer Höhe $[P_1H_1]$ $V = \frac{1}{2} \cdot \overline{AB} \cdot \overline{AD} \cdot \overline{P_nH_n}$			
	$\sin \varphi = \frac{\overline{P_n H_n}}{\overline{MP_n}} \qquad \overline{P_n H_n}(\varphi) = \frac{8,26 \cdot \sin \varphi}{\sin(\varphi + 66,59^\circ)} \text{ cm}$ $V(\varphi) = \frac{1}{3} \cdot 8 \cdot 9 \cdot \frac{8,26 \cdot \sin \varphi}{\sin(\varphi + 66,59^\circ)} \text{ cm}^3$	φ ∈] 0°; 49,11°]	3	L 3 L 4 K 4
	σ σπ(ψ τ σσ,σσ)	$\phi\in\left]0^\circ;49,11^\circ\right]$		
	$V(\varphi) = \frac{198,24 \cdot \sin\varphi}{\sin(\varphi + 66,59^\circ)} \text{cm}^3$			
B 2.6	$V_{ABCDEF} = 0.5 \cdot 8 \cdot 6.93 \cdot 9 \text{ cm}^3$	$V_{ABCDEF} = 249,48 \text{ cm}^3$		
	$V_{\text{ADEBP}_1} = \frac{198,24 \cdot \sin 30^{\circ}}{\sin (30^{\circ} + 66,59^{\circ})} \text{ cm}^{3}$	$V_{ADEBP_1} = 99,78 \text{ cm}^3$	3	L 1 L 2 K 5
	$\frac{99,78}{249,48} \cdot 100\% = 40,00\%$			
			16	

Hinweis:

Bei einigen Teilaufgaben sind auch andere Lösungswege möglich. Für richtige andere Lösungen gelten die jeweils angegebenen Punkte entsprechend; die Anzahl der Punkte bei den einzelnen Teilaufgaben darf jedoch nicht verändert werden. Insbesondere sind Lösungswege, bei denen der (grafikfähige) Taschenrechner verwendet wird, entsprechend ihrer Dokumentation bzw. ihrer Nachvollziehbarkeit zu bepunkten.

Bei der Korrektur ist zu beachten, dass die Vervielfältigung der Lösungsvorlage zu Verzerrungen der Zeichnungen führen kann.