Prüfungsdauer: 150 Minuten

Abschlussprüfung 2010 an den Realschulen in Bayern

Mathematik I

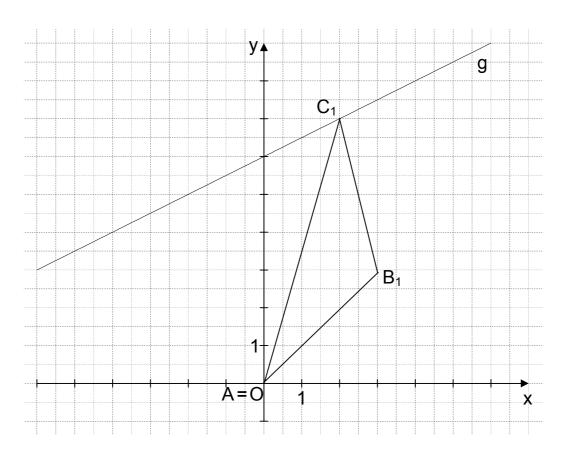
Name: _____ Vorname: ____

Klasse	::	Platz	ziffer:		Punkte	:	
Au	ufgabe A 1					Hauptterm	nin 📗
A 1.0	In einem Hand finden Sie im I die nebenstehen	Kapitel Erdatr			o m 5500 m 11000 m 16500 m	Luftdruck 1000 hPa 500 hPa 250 hPa 125 hPa 63 hPa	
A 1.1	Der Zusammer Luftdruck yhP funktion der Fo Ermitteln Sie d	The last sich of the contract $y = y_0 \cdot k^x$	lemzufolge n beschreiben	$\ddot{\mathbf{G}} = \mathbf{IR}_0^+ \times \mathbf{I}$	ise durch ei R_0^+ ; $y_0 \in \mathbb{R}^n$	ne Exponential $k \in \mathbb{R}^+ \setminus \{1\}$	[-
	sechs Stellen na		_	•			2 P
A 1.2	Berechnen Sie, ger als 777 hPa	von welcher l	Höhe über de		iegel an der	Luftdruck weni	i- 1 P
A 1.3	Kreuzen Sie an,	, um wie viel I	Prozent der Lu	ıftdruck alle	11 000 m at	onimmt.	1 P
A 1.4	Begründen Sie halb des Meere discheschenbac	esspiegels im,	tiefsten (zug			ek 5500 m unter	<u>;</u> _

1 P

3 P

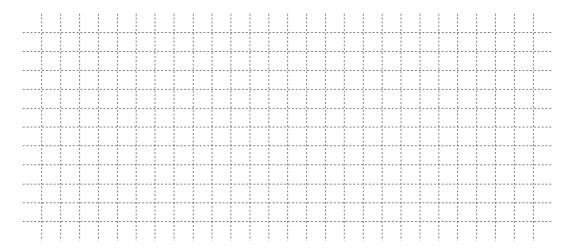
A 2.0 Der Punkt A(0|0) ist gemeinsamer Eckpunkt von gleichschenkligen Dreiecken AB_nC_n , wobei die Punkte $C_n\left(x\left|\frac{1}{2}x+6\right.\right)$ auf der Geraden g mit der Gleichung $y=\frac{1}{2}x+6$ liegen ($G=IR\times IR$). Die Basiswinkel B_nAC_n und AC_nB_n der Dreiecke AB_nC_n haben das MaB 30°.



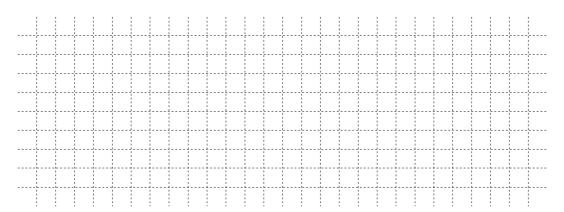
- A 2.1 In das Koordinatensystem zu 2.0 ist das Dreieck AB_1C_1 für x=2 eingezeichnet. Zeichnen Sie das Dreieck AB_2C_2 für x=-3 ein.
- A 2.2 Zeigen Sie, dass für das Längenverhältnis der Strecken [AB_n] und [AC_n] gilt: $\overline{AB_n} = \frac{1}{\sqrt{3}} \cdot \overline{AC_n} \; .$

Bestätigen Sie sodann durch Rechnung, dass für den Flächeninhalt A der Dreiecke AB_nC_n in Abhängigkeit von der Abszisse x der Punkte C_n gilt:

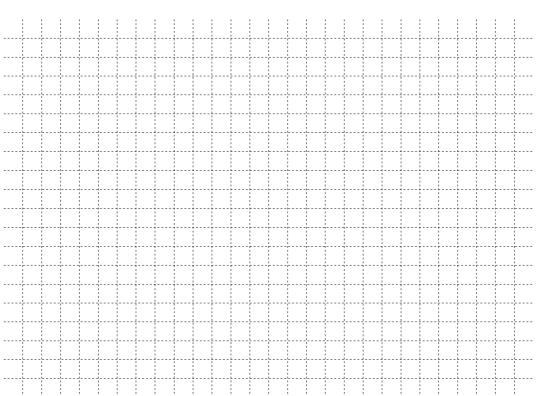
$$A(x) = \frac{1}{4\sqrt{3}} \cdot (1,25x^2 + 6x + 36) \text{ FE}.$$



 $A~2.3~~Unter~den~Dreiecken~AB_nC_n~hat~das~Dreieck~AB_0C_0~den~minimalen~Flächeninhalt.\\ Berechnen~Sie~die~Koordinaten~des~Punktes~C_0.$



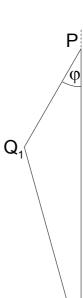
A 2.4 Berechnen Sie die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x der Punkte C_n . Runden Sie auf zwei Stellen nach dem Komma.



2 P

A 3.0 Gegeben sind Dreiecke PQ_nR mit den Seitenlängen $\overline{PQ_n}=3$ cm und $\overline{PR}=8$ cm . Die Winkel Q_nPR haben das Maß ϕ mit $\phi \in]0^\circ;90^\circ[$.

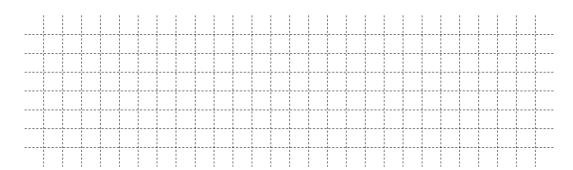
Die nebenstehende Zeichnung zeigt das Dreieck PQ_1R für $\phi=30^\circ$.



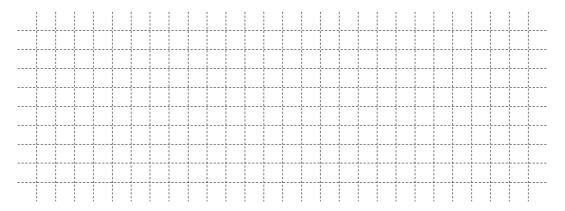
A 3.1 Geben Sie die Länge der Strecken $[Q_nR]$ in Abhängigkeit von ϕ an.

A 3.2 Die Dreiecke PQ_nR rotieren um die Gerade PR. Zeigen Sie durch Rechnung, dass für den Oberflächeninhalt O der entstehenden

Rotationskörper in Abhängigkeit von φ gilt: $O(\varphi) = 3 \cdot \pi \cdot \sin \varphi \cdot \left(3 + \sqrt{73 - 48 \cdot \cos \varphi}\right) \text{cm}^2.$



A 3.3 Die entstehenden Rotationskörper setzen sich jeweils aus zwei Kegeln zusammen. Berechnen Sie, für welches Winkelmaß φ der Mantelflächeninhalt des Kegels mit der Spitze P einen Anteil von 30% am Oberflächeninhalt O des entstehenden Rotationskörpers hat.



Prüfungsdauer: 150 Minuten

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgabe B 1

Haupttermin

- B 1.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = -\log_{0.5}(x+2) + 2$ mit $G = IR \times IR$.
- B 1.1 Geben Sie die Definitionsmenge der Funktion f₁ sowie die Gleichung der Asymptote h an und zeichnen Sie den Graphen zu f_1 für $x \in [-1,5;9]$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-3 \le x \le 11$; $-5 \le y \le 8$.

3 P

B 1.2 Der Graph der Funktion f₁ wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k = 2 sowie anschließende Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$ auf den Graphen der Funktion f_2 abgebildet.

Zeigen Sie rechnerisch, dass die Funktion f_2 die Gleichung $y = -2 \cdot \log_{0.5} x - 3$ hat $(\mathbb{G} = \mathbb{R} \times \mathbb{R}).$

3 P

B 1.3 Geben Sie die Definitionsmenge der Funktion f₂ an und zeichnen Sie den Graphen zu f₂ in das Koordinatensystem zu 1.1 ein.

2 P

 $A_n(x \mid -2 \cdot \log_{0.5} x - 3)$ auf dem Graphen zu B 1.4 Punkte f₂ und Punkte $D_n(x | -log_{0.5}(x+2)+2)$ auf dem Graphen zu f_1 haben dieselbe Abszisse x und sind zusammen mit Punkten Bn und Cn die Eckpunkte von Parallelogrammen $A_nB_nC_nD_n$. Es gilt: $\overrightarrow{D_nC_n} = \begin{pmatrix} 4\\3 \end{pmatrix}$.

Zeichnen Sie das Parallelogramm $A_1B_1C_1D_1$ für x = 1 und das Parallelogramm $A_2B_2C_2D_2$ für x = 4 in das Koordinatensystem zu 1.1 ein.

Ermitteln Sie rechnerisch, für welche Belegungen von x es Parallelogramme A_nB_nC_nD_n gibt. Runden Sie auf zwei Stellen nach dem Komma.

B 1.5 Die Winkel B_nA_nD_n haben stets das gleiche Maß. Berechnen Sie das Maß der Winkel B_nA_nD_n. Runden Sie auf zwei Stellen nach dem Komma.

1 P

4 P

B 1.6 Das Parallelogramm A₃B₃C₃D₃ ist eine Raute. Berechnen Sie die Koordinaten des Punktes A₃.

[Teilergebnis:
$$\overline{A_n D_n}(x) = \left[\log_{0.5} \left(\frac{x^2}{x+2} \right) + 5 \right] LE$$
]

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2

Haupttermin

- B 2.0 Die Raute ABCD mit den Diagonalen [AC] und [BD] ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M der Raute ABCD liegt. Es gilt: AC = 10 cm; BD = 12 cm; ≺CAS = 60°.
 - Runden Sie im Folgenden auf zwei Stellen nach dem Komma.
- B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Strecke [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Berechnen Sie sodann die Länge der Strecke [MS].

[Ergebnis: MS = 8,66 cm]

3 P

1 P

- B 2.2 Parallele Ebenen zur Grundfläche der Pyramide ABCDS schneiden die Kanten der Pyramide ABCDS in den Punkten $E_n \in [AS]$, $F_n \in [BS]$, $G_n \in [CS]$ und $H_n \in [DS]$, wobei die Winkel E_nMA das Maß ϕ mit $\phi \in]0^\circ; 90^\circ[$ haben. Die Rauten $E_nF_nG_nH_n$ sind die Grundflächen von Pyramiden $E_nF_nG_nH_nM$ mit der Spitze M. Zeichnen Sie die Pyramide $E_1F_1G_1H_1M$ für $\phi = 55^\circ$ in das Schrägbild zu 2.1 ein.
- B 2.3 Berechnen Sie die Länge der Seitenkanten $[E_nM]$ der Pyramiden $E_nF_nG_nH_nM$ in Abhängigkeit von ϕ .

[Ergebnis:
$$\overline{E}_n M(\phi) = \frac{4,33}{\sin(60^\circ + \phi)}$$
 cm]

B 2.4 Zeigen Sie durch Rechnung, dass für die Länge der Diagonalen $[E_nG_n]$ der Rauten $E_nF_nG_nH_n$ in Abhängigkeit von ϕ gilt:

$$\overline{E_n G_n}(\varphi) = \frac{8,66 \cdot \cos \varphi}{\sin(60^\circ + \varphi)} \text{ cm}.$$

B 2.5 Die Punkte E_n, F_n, G_n, H_n, M und S sind die Eckpunkte von Körpern, die sich jeweils aus zwei Pyramiden zusammensetzen.

Begründen Sie, dass sich das Volumen V dieser Körper wie folgt berechnen lässt:

$$V = \frac{1}{3} \cdot A_{Rauten E_n F_n G_n H_n} \cdot \overline{MS} .$$

Berechnen Sie sodann das Volumen V dieser Körper in Abhängigkeit von φ.

[Ergebnis:
$$V(\varphi) = 129,87 \cdot \left(\frac{\cos \varphi}{\sin(60^\circ + \varphi)}\right)^2 \text{ cm}^3$$
]

B 2.6 Für den Körper mit den Eckpunkten E_0 , F_0 , G_0 , H_0 , M und S gilt: $E_0M = 4,33$ cm . Berechnen Sie den prozentualen Anteil des Volumens dieses Körpers am Volumen der Pyramide ABCDS.

Lösungsmuster und Bewertung

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgaben A 1 - 3

Haupttermin

T	
FUNKT	
T UNKI	IONEN

A 1.1
$$1000 = y_0 \cdot k^0$$

$$\Rightarrow$$
 $y_0 = 1000$

$$y_0 \in \mathbb{R}^+$$
; $k \in \mathbb{R}^+ \setminus \{1\}$

$$500 = 1000 \cdot k^{5500}$$

$$k \in \mathbb{R}^+ \setminus \{1\}$$

. . .

$$\Leftrightarrow$$
 k = 0,999874

$$\mathbb{L} = \{0,999874\}$$

Funktionsgleichung:
$$y = 1000 \cdot 0,999874^x$$

$$\mathbf{G} = \mathbf{IR}_0^+ \times \mathbf{IR}_0^+$$

A 1.2 $777 = 1000 \cdot 0,999874^{x}$

$$x \in \mathbb{R}_0^+$$

. . .

$$\Leftrightarrow$$
 $x = 2002, 4$

$$\mathbb{L} = \{2002, 4\}$$

Der Luftdruck beträgt von einer Höhe von 2003 m (*oder:* ca. 2000 m) über dem Meeresspiegel an weniger als 777 hPa.

A 1.3 75%

1 K5

1

2

L4 K3

L4

A 1.4 Da sich der Luftdruck alle 5 500 m halbiert, wäre im Umkehrschluss 5 500 m unterhalb des Meeresspiegels ein Luftdruck von 2 000 hPa zu erwarten.

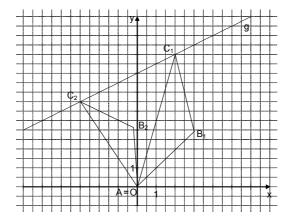
L4 K1 K3

1

EBENE GEOMETRIE

A 2.1 Zeichnung im Maßstab 1:2

L3 K4



A 2.2
$$\frac{\overline{AB_n}}{\sin 30^\circ} = \frac{\overline{AC_n}}{\sin(180^\circ - 2 \cdot 30^\circ)}$$

$$\overline{AB}_{n} = \frac{1}{\sqrt{3}} \cdot \overline{AC}_{n}$$

$$A = \frac{1}{2} \cdot \overline{AB_n} \cdot \overline{AC_n} \cdot \sin 30^{\circ}$$

$$A = \frac{1}{2\sqrt{3}} \cdot \overline{AC_n}^2 \cdot \sin 30^\circ$$

L4 K2

L4

Lösungsmuster und Bewertung

Abschlussprüfung 2010

an den Realschulen in Bayern

L4

L4 K4

Mathematik I

Aufgabe B 1

Haupttermin

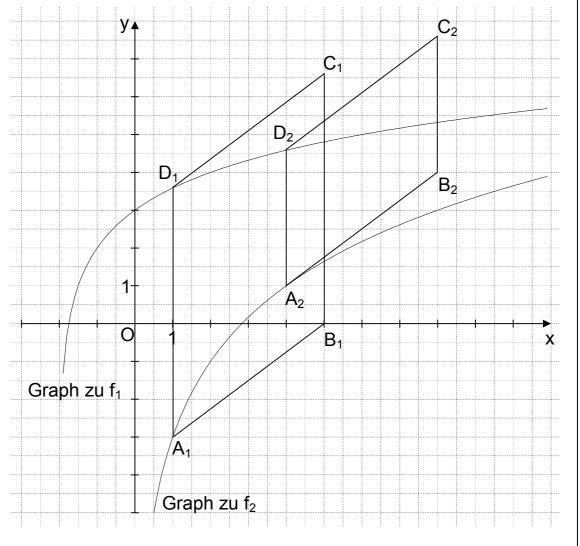
FUNKTIONEN

B 1.1 $\mathbb{D}_{f_1} = \{x \mid x > -2\}$

Gleichung der Asymptote h: x = -2

 $x \in \mathbb{R}$

 $G = IR \times IR$



3

B 1.2
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \odot \begin{pmatrix} x \\ -\log_{0.5}(x+2) + 2 \end{pmatrix}$$

$$\mathbb{G} = \mathbb{IR} \times \mathbb{IR} \; ; \; x > -2 \; ; \; x \in \mathbb{IR}$$

$$\Leftrightarrow \begin{array}{|c|c|c|c|c|c|c|c|}\hline x' = x \\ \land & y' = 2 \cdot \left(-\log_{0.5}(x+2) + 2\right) \\ \hline \end{array}$$

$$\Rightarrow y' = -2 \cdot \log_{0,5}(x'+2) + 4$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -2 \cdot \log_{0.5}(x + 2) + 4 \end{pmatrix} \oplus \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$

$$\mathbb{G} = \mathbb{IR} \times \mathbb{IR} ; x' > -2; x' \in \mathbb{IR}$$

L4

	$\Leftrightarrow \begin{cases} x'' = x' + 2 \\ \wedge y'' = -2 \cdot \log_{0.5}(x' + 2) - 3 \end{cases}$			
	$\Rightarrow y'' = -2 \cdot \log_{0.5} x'' - 3$			
	f_2 : $y = -2 \cdot \log_{0.5} x - 3$	$G = IR \times IR$	2	
			3	
B 1.3	$\mathbb{D}_{\mathbf{f}_2} = \{ \mathbf{x} \mid \mathbf{x} > 0 \}$	$x \in \mathbb{R}$		L4 K5
	Einzeichnen des Graphen zu f ₂		2	L4 K4
B 1.4	Einzeichnen der Parallelogramme $A_1B_1C_1D_1$ und $A_2B_2C_2D_2$			L3 K4
	$-\log_{0,5}(x+2) + 2 = -2 \cdot \log_{0,5} x - 3$	$x > 0$; $x \in \mathbb{R}$		L4 K2 K5
	$\Leftrightarrow (x = -1,89 \lor) x = 33,89$	$IL = {33,89}$		
	$0 < x < 33,89 \ (x \in IR)$		4	
B 1.5	$\tan(90^{\circ} - \angle B_n A_n D_n) = \frac{3}{4} \qquad \angle B_n A_n D_n = 53,13^{\circ}$	∢B,A,D,∈]0°;90°[L2 K5
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n n n J. J L	1	
B 1.6	$\overline{A_n D_n}(x) = [-\log_{0,5}(x+2) + 2 - (-2 \cdot \log_{0,5} x - 3)] LE$	$0 < x < 33,89$; $x \in IR$		L4 K2 K5
	$\overline{A_n D_n}(x) = [\log_{0.5} x^2 - \log_{0.5} (x+2) + 5] LE$			KS
	$\overline{A_n D_n}(x) = \left[\log_{0.5} \left(\frac{x^2}{x+2} \right) + 5 \right] LE$			
	$\overline{A_n D_n} = \overline{D_n C_n}$			
	$\overline{D_n C_n} = \sqrt{4^2 + 3^2} \text{ LE}$	$\overline{D_n C_n} = 5 LE$		
	$\log_{0.5}\left(\frac{x^2}{x+2}\right) + 5 = 5$	$0 < x < 33,89$; $x \in \mathbb{R}$		
	$\Leftrightarrow (x = -1 \lor) x = 2$	$IL = \{2\}$		
	$A_3(2 -1)$		4	
			17	

Lösungsmuster und Bewertung

Abschlussprüfung 2010

an den Realschulen in Bayern

L3

L2

L3

K4

3

1

2

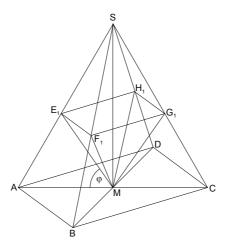
Mathematik I

Aufgabe B 2

Haupttermin

RAUMGEOMETRIE

B 2.1 Schrägbild im Maßstab 1:2



$$\tan 60^{\circ} = \frac{\overline{MS}}{0.5 \cdot 10 \text{ cm}}$$

 $\overline{MS} = 8,66 \text{ cm}$

φ∈]0°;90°[

B 2.2 Einzeichnen der Pyramide E₁F₁G₁H₁M

B 2.3
$$\frac{\overline{E_n M}(\phi)}{\sin 60^{\circ}} = \frac{\overline{AM}}{\sin(180^{\circ} - (60^{\circ} + \phi))}$$
$$\overline{E_n M}(\phi) = \frac{5 \text{ cm} \cdot \sin 60^{\circ}}{\sin(60^{\circ} + \phi)}$$

$$\overline{E_n M}(\varphi) = \frac{4,33}{\sin(60^\circ + \varphi)} \text{ cm}$$

$$\begin{split} B~2.4 & \sin(90^{\circ}-\phi) = \frac{0.5 \cdot \overline{E_n G_n}(\phi)}{\overline{E_n M}(\phi)} \iff \overline{E_n G_n}(\phi) = 2 \cdot \cos\phi \cdot \overline{E_n M}(\phi) \qquad \phi \in]0^{\circ}; 90^{\circ}[\\ & \overline{E_n G_n}(\phi) = 2 \cdot \cos\phi \cdot \frac{4.33}{\sin(60^{\circ}+\phi)} \text{ cm} \\ & \overline{E_n G_n}(\phi) = \frac{8.66 \cdot \cos\phi}{\sin(60^{\circ}+\phi)} \text{ cm} \end{split}$$

B 2.5 Es seien die Punkte
$$N_n$$
 die Schnittpunkte der Diagonalen $[E_nG_n]$ und $[F_nH_n]$ der Rauten $E_nF_nG_nH_n$.

3

L3 **K1**

$$V = \frac{1}{3} \cdot A_{\text{Rauten E, E, G_a H_a}} \cdot \overline{\text{MN}_n} + \frac{1}{3} \cdot A_{\text{Rauten E, E, G_a H_a}} \cdot \overline{\text{N}_n S}$$

$$V = \frac{1}{3} \cdot A_{\text{Rauten E, E, G_a H_a}} \cdot (\overline{\text{MN}_n} + \overline{\text{N}_n S})$$

$$V = \frac{1}{3} \cdot A_{\text{Rauten E, E, G_a H_a}} \cdot (\overline{\text{MN}_n} + \overline{\text{N}_n S})$$

$$V = \frac{1}{3} \cdot \frac{1}{2} \cdot \overline{\text{E}_n G_n} \cdot \overline{\text{F}_n H_n} \cdot \overline{\text{MS}}$$

$$Aus \frac{\overline{F_n H_n}}{\overline{\text{BD}}} = \frac{\overline{N}_n S}{\overline{\text{MS}}} \text{ und } \frac{\overline{E_n G_n}}{AC} = \frac{\overline{N}_n S}{\overline{\text{MS}}} \text{ folgt:}$$

$$\frac{\overline{F_n H_n}}{\overline{\text{BD}}} = \frac{\overline{E_n G_n}}{AC} \Leftrightarrow \overline{F_n H_n} = \frac{\overline{E_n G_n}}{AC} \cdot \overline{\text{BD}}$$

$$\overline{F_n H_n}(\phi) = \frac{10,39 \cdot \cos \phi}{\sin(60^\circ + \phi)} \text{ cm} \qquad \phi \in]0^\circ; 90^\circ[$$

$$V(\phi) = \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{8,66 \cdot \cos \phi}{\sin(60^\circ + \phi)} \cdot \frac{10,39 \cdot \cos \phi}{\sin(60^\circ + \phi)} \cdot 8,66 \text{ cm}^3$$

$$V(\phi) = 129,87 \cdot \left(\frac{\cos \phi}{\sin(60^\circ + \phi)}\right)^2 \text{ cm}^3$$

$$S = \frac{12}{3} \cdot \frac{1}{3} \cdot \frac{10,33}{\sin(60^\circ + \phi)} = 4,33 \qquad \phi \in]0^\circ; 90^\circ[$$

$$V(30^\circ) = 97,40 \text{ cm}^3$$

$$V_{\text{Pyraunide ABCDS}} = \frac{1}{3} \cdot \frac{1}{2} \cdot 10 \cdot 12 \cdot 8,66 \text{ cm}^3$$

$$V_{\text{Pyraunide ABCDS}} = 173,2 \text{ cm}^3$$

$$\frac{97,40 \text{ cm}^3}{173,2 \text{ cm}^3} = 0,56$$

$$\text{Der Anteil beträgt } 56\%.$$

Prüfungsdauer: 150 Minuten

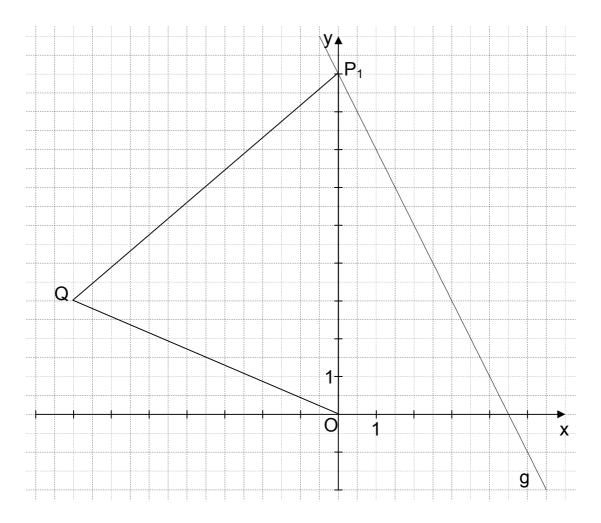
Abschlussprüfung 2010 an den Realschulen in Bayern

Mathematik I

Name:	Vorname:					
Klasse	Platzziffer: Punkte:					
Au	gabe A 1 Nachtermin					
A 1.0	Lenkt man eine Schiffschaukel auf eine Anfangshöhe von 2,00 m aus und lässt sie dann schwingen, so nimmt die maximal erreichte Höhe nach jeder Schwingung um 10% ab. 2,00 m 2,00 m					
A 1.1	Ergänzen Sie die Tabelle. Runden Sie auf zwei Stellen nach dem Komma.					
	Anzahl der Schwingungen 0 1 2 3 Maximal erreichte Höhe in m 2,00					
A 1.2	Der Zusammenhang zwischen der Anzahl x der Schwingungen und der maximal erreichten Höhe ym lässt sich näherungsweise durch eine Exponentialfunktion der Form $y = y_0 \cdot k^x$ beschreiben ($\mathbb{G} = \mathbb{R}_0^+ \times \mathbb{R}_0^+$; $y_0 \in \mathbb{R}^+$; $k \in \mathbb{R}^+ \setminus \{1\}$). Geben Sie die Funktionsgleichung an.					
A 1.3	Ermitteln Sie durch Rechnung die Anzahl der Schwingungen, nach der die maximal erreichte Höhe erstmals weniger als 0,25 m beträgt.					
A 1.4	Berechnen Sie das Maß δ des Auslenkungswinkels am Ende der vierten Schwingung. Runden Sie auf zwei Stellen nach dem Komma.					

A 2.0 Die Punkte O(0|0) und Q(-7|3) sind für x < 5,73 gemeinsame Eckpunkte von Dreiecken OP_nQ , wobei die Punkte $P_n(x|-2x+9)$ auf der Geraden g mit der Gleichung y = -2x + 9 liegen ($\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$).

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

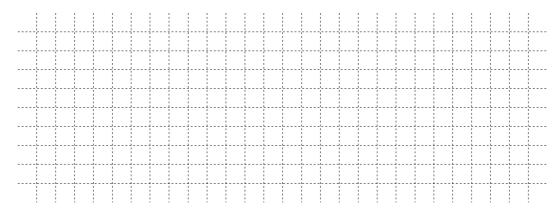


A 2.1 In das Koordinatensystem zu 2.0 ist das Dreieck OP_1Q für x = 0 eingezeichnet. Zeichnen Sie das Dreieck OP_2Q für x = 4 ein.

1 P

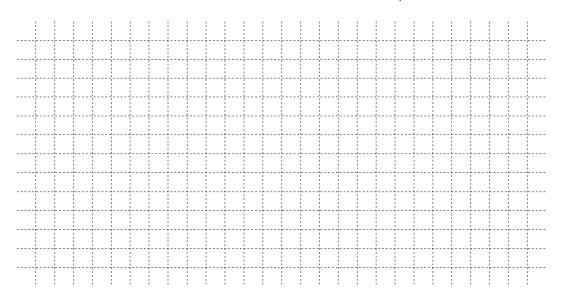
A 2.2 Im Dreieck OP₃Q gilt: $\angle P_3$ OQ = 90°.

Berechnen Sie den zugehörigen Wert von x.

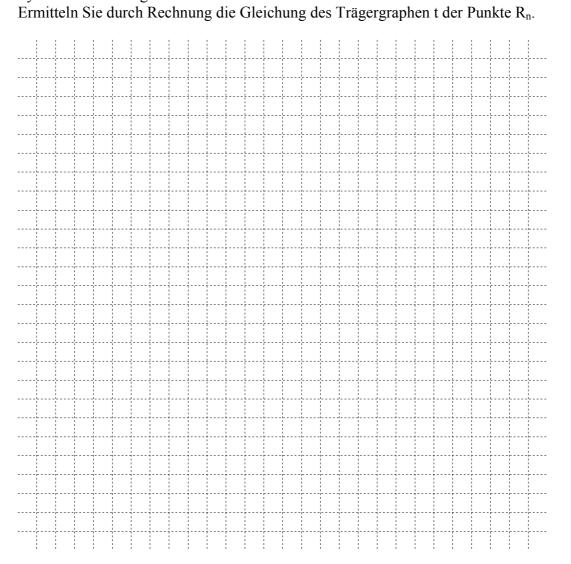


A 2.3 Das Dreieck OP₄Q ist gleichschenklig und hat die Basis [P₄Q]. Zeichnen Sie das Dreieck OP₄Q in das Koordinatensystem zu 2.0 ein und bestimmen Sie sodann rechnerisch die Koordinaten des Punktes P₄.

2 P



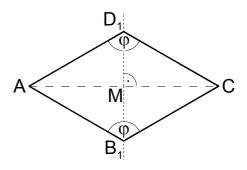
A 2.4 Die Dreiecke OP_nQ werden zu Drachenvierecken OP_nQR_n mit der Geraden OQ als Symmetrieachse ergänzt.



A 3.0 Die Axialschnitte von Rotationskörpern sind Rauten AB_nCD_n mit $\overline{AC}=5$ cm. Die Winkel AD_nC und CB_nA haben das Maß ϕ mit $\phi \in]0^\circ;180^\circ[$.

Die Geraden B_nD_n sind die Rotationsachsen.

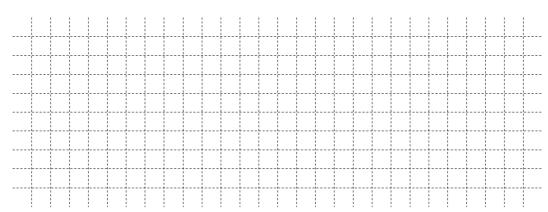
Die nebenstehende Skizze zeigt den Axialschnitt für $\phi = 120^{\circ}$.



A 3.1 Berechnen Sie das Volumen V der Rotationskörper in Abhängigkeit von ϕ . Runden Sie auf zwei Stellen nach dem Komma.

[Ergebnis:
$$V(\varphi) = \frac{32,72}{\tan \frac{\varphi}{2}} \text{ cm}^3$$
]

2 P

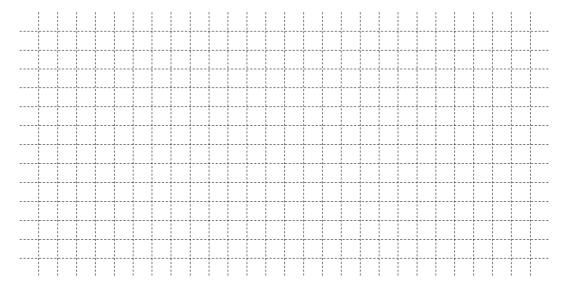


A 3.2 Den Rauten AB_nCD_n werden Quadrate $E_nF_nG_nH_n$ einbeschrieben mit $E_n \in [AB_n]$, $F_n \in [B_nC]$, $G_n \in [CD_n]$ und $H_n \in [D_nA]$. Es gilt: $E_nH_n \parallel B_nD_n$. Zeichnen Sie das Quadrat $E_1F_1G_1H_1$ in den Axialschnitt zu 3.0 ein.

1 P

A 3.3 Der Rotationskörper, dessen Axialschnitt die Raute AB₂CD₂ ist, hat das Volumen 32,72 cm³.

Bestimmen Sie die Seitenlänge des Quadrates E₂F₂G₂H₂.



Prüfungsdauer: 150 Minuten

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgabe B 1 Nachtermin

- B 1.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = log_2(x+3) + 2$ mit $G = IR \times IR$.
- B 1.1 Geben Sie die Definitionsmenge und die Wertemenge der Funktion f_1 sowie die Gleichung der Asymptote h an.

Berechnen Sie die Koordinaten des Schnittpunktes S des Graphen der Funktion f_1 mit der x-Achse und zeichnen Sie den Graphen zu f_1 für $x \in [-2, 8; 9]$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-4 \le x \le 10$; $-3 \le y \le 6$.

4 P

B 1.2 Der Graph der Funktion f_1 wird durch Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ auf den Graphen der Funktion f_2 abgebildet.

Ermitteln Sie durch Rechnung die Gleichung der Funktion f_2 und zeichnen Sie den Graphen zu f_2 in das Koordinatensystem zu 1.1 ein.

2 P

B 1.3 Punkte $C_n(x | log_2(x+3)+2)$ auf dem Graphen zu f_1 und Punkte $M_n(x | log_2 x)$ auf dem Graphen zu f_2 haben dieselbe Abszisse x. Für x>0 sind die Punkte C_n zusammen mit Punkten A_n und B_n die Eckpunkte von gleichschenkligen Dreiecken $A_nB_nC_n$ mit den Basen $[A_nB_n]$. Die Punkte M_n sind die Mittelpunkte der Basen $[A_nB_n]$. Es gilt: $\overline{A_nB_n}=8$ LE .

Zeichnen Sie das Dreieck $A_1B_1C_1$ für x=2 und das Dreieck $A_2B_2C_2$ für x=5 in das Koordinatensystem zu 1.1 ein.

1 P

B 1.4 Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[M_nC_n]$ in Abhängigkeit von der Abszisse x der Punkte C_n gilt:

$$\overline{M_n C_n}(x) = \left[\log_2 \left(\frac{x+3}{x} \right) + 2 \right] LE.$$

1 P

B 1.5 Das Dreieck A₃B₃C₃ hat den Flächeninhalt 15 FE.

Berechnen Sie die x-Koordinate des Punktes C₃. Runden Sie auf zwei Stellen nach dem Komma.

3 P

B 1.6 Das Dreieck A₄B₄C₄ ist gleichseitig.

Berechnen Sie die Koordinaten des Punktes C₄. Runden Sie auf zwei Stellen nach dem Komma.

3 P

B 1.7 Der Eckpunkt A₅ des Dreiecks A₅B₅C₅ liegt auf dem Graphen zu f₁.

Ermitteln Sie durch Rechnung die x-Koordinate des Punktes A₅. Runden Sie auf zwei Stellen nach dem Komma.

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2010

Mathematik I

Aufgabe B 2 Nachtermin

B 2.0 Das gleichschenklige Dreieck ABC mit der Basis [AB] ist die Grundfläche eines geraden Prismas ABCDEF. Der Punkt $G \in [AB]$ ist der Fußpunkt der Höhe [CG] des Dreiecks ABC. Der Punkt $H \in [DE]$ liegt senkrecht über dem Punkt G.

Es gilt:
$$\overline{AB} = 8 \text{ cm}$$
; $\overline{AD} = 9 \text{ cm}$; $\overline{CG} = 10 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild des Prismas ABCDEF, wobei die Strecke [CG] auf der Schrägbildachse und der Punkt C links vom Punkt G liegen soll.

Für die Zeichnung gilt:
$$q = \frac{1}{2}$$
; $\omega = 45^{\circ}$.

Berechnen Sie sodann das Maß des Winkels HGF.

[Ergebnis:
$$\angle HGF = 48,01^{\circ}$$
]

3 P

B 2.2 Der Punkt T liegt auf der Strecke [GH]. Es gilt: $\overline{HT}=4\,\text{cm}$. Punkte P_n auf der Strecke [FG] sind zusammen mit den Punkten G und T die Eckpunkte von Dreiecken GTP_n. Die Winkel P_nTG haben das Maß ϕ .

Zeichnen Sie das Dreieck GTP₁ für $\varphi = 70^{\circ}$ in das Schrägbild zu 2.1 ein.

Für alle Dreiecke GTP_n gilt: $\phi \in [0^{\circ}; 111, 80^{\circ}]$.

Begründen Sie die obere Intervallgrenze.

2 P

B 2.3 Berechnen Sie die Länge der Strecken [GP_n] in Abhängigkeit von φ.

[Ergebnis:
$$\overline{GP_n}(\varphi) = \frac{5 \cdot \sin \varphi}{\sin(\varphi + 48,01^\circ)}$$
 cm]

B 2.4 Das Dreieck GTP₀ ist gleichschenklig und hat die Basis [GT].

Ermitteln Sie durch Rechnung die Länge der Strecke [GP₀].

2 P

2 P

B 2.5 Die Punkte P_n sind die Spitzen von Pyramiden ABC P_n mit den Höhen $[P_nK_n]$, deren Fußpunkte K_n auf der Strecke [CG] liegen.

Zeichnen Sie die Pyramide $ABCP_1$ in das Schrägbild zu 2.1 ein und ermitteln Sie sodann rechnerisch das Volumen V der Pyramiden $ABCP_n$ in Abhängigkeit von ϕ .

[Ergebnis:
$$V(\phi) = \frac{44,67 \cdot \sin \phi}{\sin(\phi + 48,01^{\circ})} \text{ cm}^3$$
]

B 2.6 Das Volumen der Pyramide ABCP₂ ist um 80% kleiner als das Volumen des Prismas ABCDEF.

Berechnen Sie das zugehörige Winkelmaß ϕ .

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgaben A 1 - 3

Nachtermin

FUNKTIONEN	Fu	NKT	ION	EN
-------------------	----	-----	-----	----

A 1.1	Anzahl der Schwingungen		1	2	3
	Maximal erreichte Höhe in m	2,00	1,80	1,62	1,46

L1 K5

1

1

A 1.2 Funktionsgleichung: $y = 2,00 \cdot 0,9^x$

 $G = IR_0^+ \times IR_0^+$

K3

A 1.3 $0,25 = 2,00 \cdot 0,9^{x}$

 $x \in \mathbb{R}_0^+$

L4 K

 \Leftrightarrow x = 19,74

 $IL = \{19, 74\}$

Nach 20 Schwingungen beträgt die maximal erreichte Höhe erstmals weniger als 0,25 m.

1

2

A 1.4 $y = 2,00 \cdot 0,9^4$

y = 1,31

 $\cos \delta = \frac{4,00-1,31}{4,00}$

 $\delta = 47,74^{\circ}$

 $\delta \in [0^\circ; 60^\circ]$

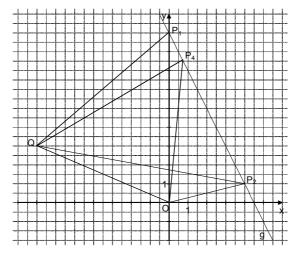
K

L2

EBENE GEOMETRIE

A 2.1 Zeichnung im Maßstab 1:2

L3 K



1

A 2.2 $\overrightarrow{OQ} = \begin{pmatrix} -7 \\ 3 \end{pmatrix}$; $\overrightarrow{OP_n}(x) = \begin{pmatrix} x \\ -2x+9 \end{pmatrix}$

 $x < 5,73; x \in IR$

K:

 $\binom{-7}{3} \odot \binom{x}{-2x+9} = 0$

 $x < 5,73; x \in IR$

. . .

 \Leftrightarrow x = 2,08

 $\mathbb{L} = \{2, 08\}$

2

A 2.3 Einzeichnen des Dreiecks OP₄Q

L3

Lösungsmuster und Bewertung

Abschlussprüfung 2010

an den Realschulen in Bayern

Mathematik I

Aufgabe B 1

Nachtermin

FUNKTIONEN

B 1.1 $\mathbb{D}_{f_1} = \{x \mid x > -3\}$

 $x \in \mathbb{R}$

 $\mathbf{W}_{\mathbf{f}_1} = \mathbf{I}\mathbf{R}$

Gleichung der Asymptote h: x = -3

 $G = IR \times IR$

 $\log_2(x+3) + 2 = 0$

x > -3; $x \in \mathbb{R}$

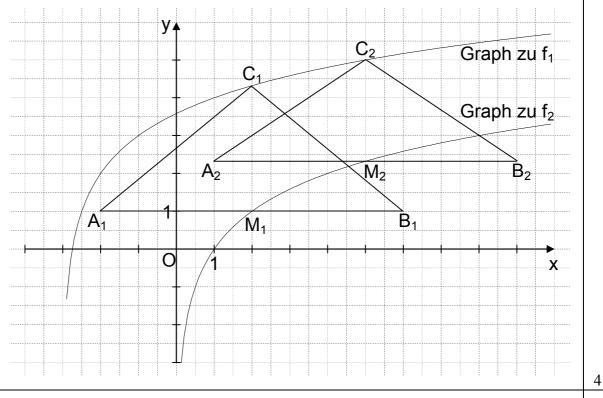
. . .

 \Leftrightarrow x = -2,75

 $\mathbb{L} = \{-2, 75\}$

S(-2,75|0)

L4 K5



 $\mathbb{G} = \mathbb{IR} \times \mathbb{IR} ; x > -3; x \in \mathbb{IR}$

 $\Leftrightarrow \Big|_{\wedge}$

x' = x + 3 $\wedge y' = \log_2(x+3)$

 \Rightarrow y' = $\log_2 x'$

 f_2 : $y = log_2 x$

 $G = IR \times IR$

Einzeichnen des Graphen zu f2

L4 K4

2

L4 K5

B 1.3 Einzeichnen der Dreiecke A₁B₁C₁ und A₂B₂C₂

L3 K4

B 1.4	$\overline{M_n C_n}(x) = [\log_2(x+3) + 2 - \log_2 x] LE$	$x > 0$; $x \in \mathbb{R}$		L4 K5
	$\overline{M_{n}C_{n}}(x) = \left[\log_{2}\left(\frac{x+3}{x}\right) + 2\right] LE$		1	
-			1	
B 1.5	$A_{\Delta A_n B_n C_n} = \frac{1}{2} \cdot \overline{A_n B_n} \cdot \overline{M_n C_n}$			L4 K2 K5
	$A_{\Delta A_n B_n C_n}(x) = \frac{1}{2} \cdot 8 \cdot \left[\log_2 \left(\frac{x+3}{x} \right) + 2 \right] FE$	$x > 0$; $x \in \mathbb{R}$		
	$A_{\Delta A_n B_n C_n}(x) = \left[4 \cdot \log_2 \left(\frac{x+3}{x} \right) + 8 \right] FE$			
	$4 \cdot \log_2\left(\frac{x+3}{x}\right) + 8 = 15$	$x > 0$; $x \in \mathbb{R}$		
	\Leftrightarrow $x = 1,27$	$IL = \{1, 27\}$	3	
B 1.6	$\overline{M_4C_4} = \frac{\overline{A_4B_4}}{2} \cdot \sqrt{3}$			L4 K2 K5
	$\log_2\left(\frac{x+3}{x}\right) + 2 = \frac{8}{2} \cdot \sqrt{3}$	$x > 0$; $x \in \mathbb{R}$		
	\Leftrightarrow $x = 0.10$	$\mathbb{L} = \{0, 10\}$		
	$C_4(0,10 3,63)$			
	C ₄ (0,10 3,03)		3	
			-	
B 1.7	Trägergraph t der Punkte A _n :			L4 K2
	$t: y = \log_2(x+4)$	$\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$		K5
	$\log_2(x+3) + 2 = \log_2(x+4)$	$x > -3$; $x \in \mathbb{R}$		
	$\Leftrightarrow x = -2,67$	$IL = \{-2, 67\}$	3	
			17	

Lösungsmuster und Bewertung

Abschlussprüfung 2010

an den Realschulen in Bayern

L3

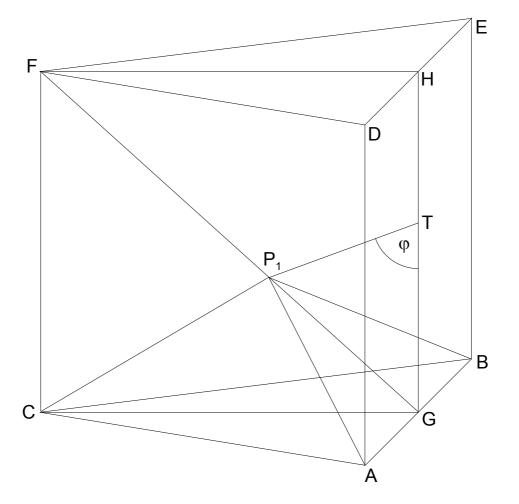
Mathematik I

Aufgabe B 2

Nachtermin

RAUMGEOMETRIE

B 2.1



$$\tan \ll HGF = \frac{10 \text{ cm}}{9 \text{ cm}}$$

B 2.2 Einzeichnen des Dreiecks GTP₁

Für die obere Intervallgrenze gilt: $\varphi = \langle FTG \rangle$.

$$\angle FTG = 180^{\circ} - \angle HTF$$

$$\tan \angle HTF = \frac{10 \text{ cm}}{4 \text{ cm}} \qquad \angle HTF = 68,20^{\circ} \qquad \angle HTF \in]0^{\circ};90^{\circ}[$$

$$\not \subset FTG = 111,80^{\circ}$$
 $\Rightarrow \phi = 111,80^{\circ}$

B 2.3
$$\frac{\overline{GP_n}(\phi)}{\sin \phi} = \frac{\overline{GT}}{\sin(180^\circ - (\phi + 48,01^\circ))}$$
 $\phi \in]0^\circ;111,80^\circ]$

L4 K2

2

L2

L3 K4 L3

K1

3

	$\overline{GP_n}(\phi) = \frac{(9 \text{ cm} - 4 \text{ cm}) \cdot \sin \phi}{\sin(\phi + 48, 01^\circ)}$ $\overline{GP_n}(\phi) = \frac{5 \cdot \sin \phi}{\sin(\phi + 48, 01^\circ)} \text{ cm}$		2	
B 2.4	$\varphi = \ll HGF$ $\overline{GP_0} = \frac{5 \cdot \sin 48,01^{\circ}}{\sin(48,01^{\circ} + 48,01^{\circ})} cm$	φ = 48,01°		L2 K2 K5
	$\overline{GP_0} = 3,74 \text{ cm}$		2	
B 2.5	Einzeichnen der Pyramide ABCP ₁			L3 K4
	$V = \frac{1}{3} \cdot \frac{1}{2} \cdot \overline{AB} \cdot \overline{CG} \cdot \overline{P_n K_n}$			L4 K2 K5
	$\sin \ll FGC = \frac{\overline{P_n K_n}}{\overline{GP_n}} \Leftrightarrow \overline{P_n K_n} = \overline{GP_n} \cdot \sin \ll FGC$			
	≮FGC = 90° – 48,01°	∢ FGC = 41,99°		
	$\overline{P_n K_n}(\varphi) = \frac{5 \cdot \sin \varphi}{\sin(\varphi + 48,01^\circ)} \cdot \sin 41,99^\circ \text{ cm}$	φ ∈]0°;111,80°]		
	$\overline{P_n K_n}(\varphi) = \frac{3.35 \cdot \sin \varphi}{\sin(\varphi + 48.01^\circ)} \text{ cm}$			
	$V(\varphi) = \frac{1}{3} \cdot \frac{1}{2} \cdot 8 \cdot 10 \cdot \frac{3,35 \cdot \sin \varphi}{\sin(\varphi + 48,01^{\circ})} \text{ cm}^{3}$	φ∈]0°;111,80°]		
	$V(\varphi) = \frac{44,67 \cdot \sin \varphi}{\sin(\varphi + 48,01^{\circ})} \text{ cm}^{3}$		5	
B 2.6	$V_{\text{Prisma ABCDEF}} = \frac{1}{2} \cdot 8 \cdot 10 \cdot 9 \text{ cm}^3$	$V_{Prisma\ ABCDEF} = 360\ cm^3$		L4 K2 K5
	$\frac{44,67 \cdot \sin \varphi}{\sin(\varphi + 48,01^\circ)} = 0,2 \cdot 360$	φ ∈]0°;111,80°]		
	$\Leftrightarrow \phi = 93,74^{\circ}$	$IL = \{93, 74^{\circ}\}$	3	
			17	