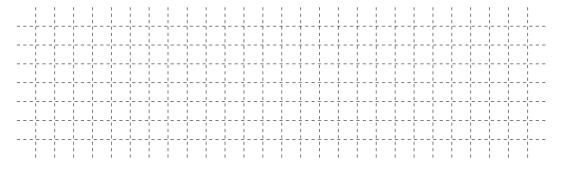
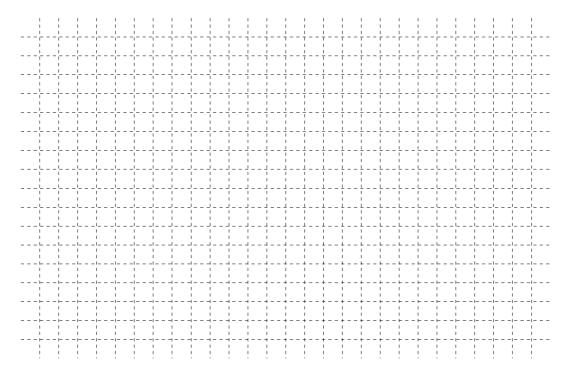
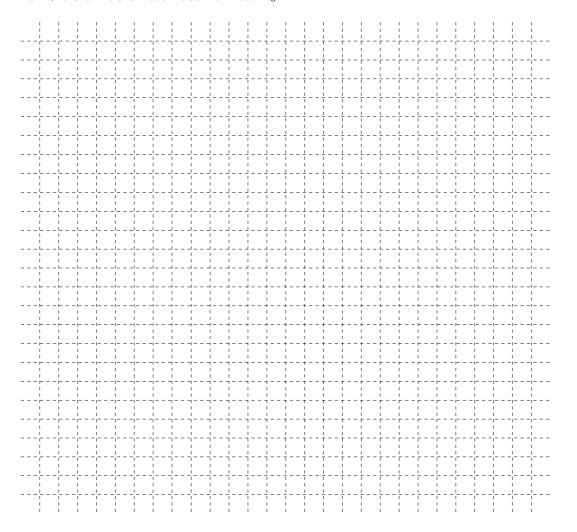

Abschlussprüfung 2008 an den Realschulen in Bayern

R4/R6


Mathematik I Name:		Н	Haupttermin					
			Vorname:					
Klasse	:	Platzziffe	r:		_ Pu	ınkte:		
P 1.0	Lässt man einen Gr nach jedem Auftre Sprunghöhe, die de	ffen am Boden a	ın Sprungl	höhe. Die	Tabelle			
		odenkontakte unghöhe in cm	0 100,0	1 80,0	2 64,0	3 51,2		
P 1.1	Geben Sie an, um vabnimmt.	wie viel Prozent	die maxin	nale Spru	nghöhe n	ach jeden	-	1 P
P 1.2	Der Zusammenhan Sprunghöhe y cm $y = y_0 \cdot k^x$ beschrie	kann näherungsv been werden (G =	veise durc = $\mathbb{R}_0^+ \times \mathbb{R}$	h eine Ex	xponentia	lfunktion		1 D
	Geben Sie die Funk							1 P
P 1.3	Bestimmen Sie du maximale Sprungho	_					h der die	1 P
					i i i			
P 1.4	Berechnen Sie a zurückgelegt hat, v Sprunghöhe erreich	wenn er nach de	_					2 P

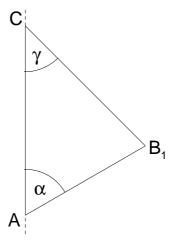

2 P

P 2.0 Gegeben ist das Dreieck ABC mit A(-4|0), B(3,5|0) und C(-1|9). Die Eckpunkte $Q_n(x|y)$ ($G = IR \times IR$) von gleichschenklig-rechtwinkligen Dreiecken PQ_nR_n mit P(0|0) und $SQ_nPR_n = 90^\circ$ liegen auf der Seite [BC] des Dreiecks ABC.



- P 2.1 Zeichnen Sie die Dreiecke PQ_1R_1 mit $Q_1(3|y_1)$, PQ_2R_2 mit $Q_2(2,5|y_2)$ und PQ_3R_3 mit $Q_3(1|y_3)$ in das Koordinatensystem zu 2.0 ein.
- P 2.2 Zeichnen Sie den Trägergraphen g der Punkte R_n in das Koordinatensystem zu 2.0 ein und ermitteln Sie seine Gleichung durch Rechnung.

P 2.3 Das Dreieck PQ₀R₀ ist dem Dreieck ABC einbeschrieben. Zeichnen Sie das Dreieck PQ₀R₀ in das Koordinatensystem zu 2.0 ein und berechnen Sie die Koordinaten des Punktes R₀.



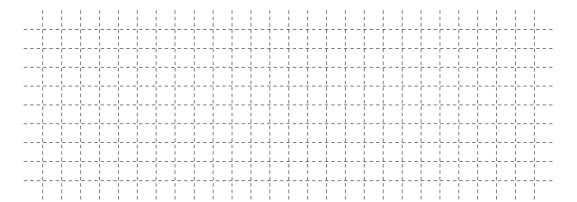
P 3.0 Gegeben sind Dreiecke AB_nC.

Es gilt: $\overline{AC} = 5 \text{ cm}$; $\gamma = 45^{\circ}$.

Die Winkel B_nAC haben das Maß α mit $\alpha \in]0^\circ; 90^\circ]$.

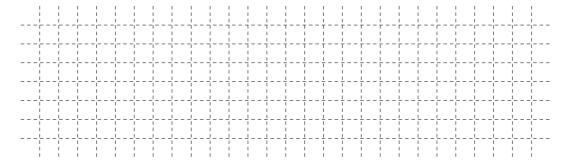
Die nebenstehende Zeichnung zeigt das Dreieck AB_1C für $\alpha = 60^{\circ}$.

P 3.1 Für $\alpha = 90^{\circ}$ ergibt sich das Dreieck AB₀C.


Begründen Sie: Der Abstand des Punktes B₀ von der Geraden AC beträgt 5 cm.

1 P

P 3.2 Bestimmen Sie durch Rechnung den Abstand d der Punkte B_n von der Geraden AC in Abhängigkeit von α für $\alpha \in]0^{\circ}; 90^{\circ}[$.


2 P

P 3.3 Die Dreiecke AB_nC rotieren um die Gerade AC.

Berechnen Sie das Volumen V des entstehenden Rotationskörpers für $\alpha = 72^{\circ}$.

Runden Sie auf zwei Stellen nach dem Komma.

an den Realschulen in Bayern

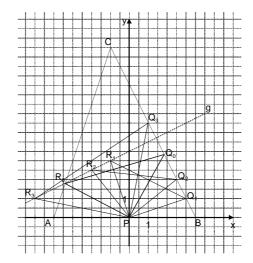
Mathematik I

Haupttermin

Aufgaben P1-3

Lösungsmuster und Bewertung

FUNKT	TONEN		
P 1.1	Aus der Tabelle folgt: Die maximale Sprunghöhe nimmt nach jedem Aufprall um 20% ab.	1	L5 K4
P 1.2	Funktionsgleichung: $y = 100, 0.0, 8^x$ $G = \mathbb{R}_0^+ \times \mathbb{R}_0^+$	1	L4 K3
P 1.3	$30,0 = 100, 0 \cdot 0,8^{x}$ $x \in \mathbb{R}_{0}^{+}$		L4 K5
	\Leftrightarrow x = 5,4		


P 1.4 $y = 100, 0.0, 8^4$ y = 41,0

Gesamtstrecke: (100,0+2.80,0+2.64,0+2.51,2+41,0) cm = 531,4 cm

EBENE GEOMETRIE

als 30,0 cm.

P 2.1 Zeichnung im Maßstab 1:2

P 2.2 Einzeichnen des Trägergraphen g der Punkte R_n

$$\overrightarrow{BC} = \begin{pmatrix} -4,5\\ 9 \end{pmatrix} \implies m_{BC} = -2$$

BC:
$$y = -2x + 7$$

$$G = IR \times IR$$

2

2

L3 K4

L4 **K5**

$\overrightarrow{AC} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \implies m_{AC} = 3 \qquad AC: \ y = 3x + 12 \qquad G = IR \times IR$ $Ermittlung \ der \ Koordinaten \ des \ Punktes \ R_0:$ $\begin{vmatrix} y = 0,5x + 3,5 \\ \land \ y = 3x + 12 \end{vmatrix} \qquad G = IR \times IR$ $\overrightarrow{BR} = \{(-3,4 1,8)\} \qquad R_0(-3,4 1,8) $ $\overrightarrow{RAUMGEOMETRIE}$ $P \ 3.1 Für \ \alpha = 90^{\circ} \ gilt: \ d(B_0;AC) = \overrightarrow{AB_0} \ . \ Da \ gilt: \ \gamma = 45^{\circ}, \ ist \ das \ Dreieck \ AB_0C \ gleichschenklig-rechtwinklig \ mit \ \overrightarrow{AB_0} = \overrightarrow{AC} \ . \ Daraus \ folgt: \ d(B_0;AC) = 5 \ cm \ .$ $P \ 3.2 \qquad tan \ \alpha = \frac{d(\alpha)}{5 \ cm - d(\alpha)} \qquad \alpha \in]0^{\circ}; 90^{\circ}[; \ 0 \ cm < d(\alpha) < 5 \ cm \ kg \ R_0$ $\Leftrightarrow \ d(\alpha) = tan \ \alpha \cdot (5 \ cm - d(\alpha)) \qquad \alpha \in]0^{\circ}; 90^{\circ}[; \ 0 \ cm < d(\alpha) < 5 \ cm \ R_0$ $\Leftrightarrow \ d(\alpha) = \frac{5 \cdot tan \ \alpha}{1 + tan \ \alpha} \ cm \ .$ $P \ 3.3 \qquad V = V_{obster \ Kegel} + V_{unterer \ Kegel} \qquad 2$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{obster \ Kegel} + \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{unterer \ Kegel}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot (h_{obster \ Kegel} + h_{unterer \ Kegel})$ $V = \frac{1}{3} \cdot \left(\frac{5 \cdot tan \ 72^{\circ}}{1 + tan \ 72^{\circ}}\right)^2 \cdot \pi \cdot 5 \ cm^3 \qquad V = 74,57 \ cm^3$		- 2 -		1	
$\begin{array}{c} P \ 2.3 \mbox{Einzeichnen des Dreiecks } PQ_0R_0 \\ \hline \overrightarrow{AC} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \ \Rightarrow \ m_{AC} = 3 \qquad AC \colon y = 3x + 12 \qquad G = \mathbb{R} \times \mathbb{R} \\ \hline Ermittlung der Koordinaten des Punktes R_0 \colon \\ \ y = 0, 5x + 3, 5 \\ \ A y = 3x + 12 \qquad G = \mathbb{R} \times \mathbb{R} \\ \hline \mathbb{L} = \{(-3,4 \mid 1,8)\} \qquad R_0(-3,4 \mid 1,8) \end{array}$		$ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{e} \begin{pmatrix} x \\ -2x + 7 \end{pmatrix} $	$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2x - 7 \\ x \end{pmatrix}$	3	
$\overrightarrow{AC} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \implies m_{AC} = 3 \qquad AC; \ y = 3x + 12 \qquad G = \mathbb{R} \times \mathbb{R}$ Ermittlung der Koordinaten des Punktes R_0 :	P 2 3	Finzeichnen des Dreiecks POoRo			L3
$\begin{array}{c} y = 0,5x + 3,5 \\ \wedge y = 3x + 12 \\ \blacksquare L = \{(-3,4 \mid 1,8)\} \end{array} \qquad $	1 2.3	$\overrightarrow{AC} = \begin{pmatrix} 3 \\ 9 \end{pmatrix} \implies m_{AC} = 3$ AC: $y = 3x + 12$	$\mathbb{G} = \mathbb{I} \mathbb{R} \times \mathbb{I} \mathbb{R}$		L4 K2 K5
RAUMGEOMETRIE P 3.1 Für $\alpha = 90^{\circ}$ gilt: $d(B_0; AC) = \overline{AB_0}$. Da gilt: $\gamma = 45^{\circ}$, ist das Dreieck AB_0C gleichschenklig-rechtwinklig mit $\overline{AB_0} = \overline{AC}$. Daraus folgt: $d(B_0; AC) = 5$ cm. P 3.2 $\tan \alpha = \frac{d(\alpha)}{5 \text{ cm} - d(\alpha)}$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \text{ cm} < d(\alpha) < 5 \text{ cm}$ $\Leftrightarrow d(\alpha) = \tan \alpha \cdot (5 \text{ cm} - d(\alpha))$ $\Leftrightarrow d(\alpha) = 5 \cdot \tan \alpha \text{ cm} - d(\alpha) \cdot \tan \alpha$ $\Leftrightarrow d(\alpha) = \frac{5 \cdot \tan \alpha}{1 + \tan \alpha} \text{ cm}$ 2 P 3.3 $V = V_{\text{oberer Kegel}} + V_{\text{uniterer Kegel}}$ 2 $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{\text{oberer Kegel}} + h_{\text{uniterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot (h_{\text{oberer Kegel}} + h_{\text{uniterer Kegel}})$ $V = \frac{1}{3} \cdot \left(\frac{5 \cdot \tan 72^{\circ}}{1 + \tan 72^{\circ}}\right)^2 \cdot \pi \cdot 5 \text{ cm}^3$ $V = 74,57 \text{ cm}^3$		_	$\mathbb{G} = \mathbb{I}\mathbb{R} \times \mathbb{I}\mathbb{R}$		
RAUMGEOMETRIE P 3.1 Für $\alpha = 90^{\circ}$ gilt: $d(B_0; AC) = \overline{AB_0}$. Da gilt: $\gamma = 45^{\circ}$, ist das Dreieck AB_0C gleichschenklig-rechtwinklig mit $\overline{AB_0} = \overline{AC}$. Daraus folgt: $d(B_0; AC) = 5$ cm . P 3.2 $\tan \alpha = \frac{d(\alpha)}{5 \operatorname{cm} - d(\alpha)}$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}$ $\Leftrightarrow d(\alpha) = \tan \alpha \cdot (5 \operatorname{cm} - d(\alpha))$ $\Leftrightarrow d(\alpha) = 5 \cdot \tan \alpha \operatorname{cm} - d(\alpha) \cdot \tan \alpha$ $\Leftrightarrow d(\alpha) = \frac{5 \cdot \tan \alpha}{1 + \tan \alpha} \operatorname{cm}$ $\Rightarrow d(\alpha) = \frac{5 \cdot \tan \alpha}{1 + \tan \alpha} \operatorname{cm}$ P 3.3 $V = V_{\text{obsers Kegel}} + V_{\text{uniterer Kegel}}$ $\Rightarrow d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{\text{uniterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot (h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}})$ $\Rightarrow d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot (h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}})$ $\Rightarrow d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$ $\Rightarrow d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$ $\Rightarrow d(72^{\circ})^2 \cdot \pi \cdot h_{\text{obsers Kegel}} + h_{\text{uniterer Kegel}}$		$\mathbb{L} = \{ (-3, 4 \mid 1, 8) \}$	$R_0(-3,4 1,8)$	4	
P 3.1 Fur $\alpha = 90^{\circ}$ gift: $d(B_0; AC) = AB_0$. Da gift: $\gamma = 45^{\circ}$, ist das Dreieck AB_0C gleichschenklig-rechtwinklig mit $\overline{AB_0} = \overline{AC}$. Daraus folgt: $d(B_0; AC) = 5$ cm. P 3.2 $\tan \alpha = \frac{d(\alpha)}{5 \operatorname{cm} - d(\alpha)}$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\alpha \in [0, 1]$ $\alpha \in $	RAUMO	GEOMETRIE			J
P 3.2 $\tan \alpha = \frac{d(\alpha)}{5 \operatorname{cm} - d(\alpha)} \qquad \alpha \in]0^{\circ}; 90^{\circ}[; 0 \operatorname{cm} < d(\alpha) < 5 \operatorname{cm}]$ $\Leftrightarrow d(\alpha) = \tan \alpha \cdot (5 \operatorname{cm} - d(\alpha))$ $\Leftrightarrow d(\alpha) = 5 \cdot \tan \alpha \operatorname{cm} - d(\alpha) \cdot \tan \alpha$ $\Leftrightarrow d(\alpha) = \frac{5 \cdot \tan \alpha}{1 + \tan \alpha} \operatorname{cm}$ 2 P 3.3 $V = V_{\text{oberer Kegel}} + V_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{oberer Kegel}} + \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot (h_{\text{oberer Kegel}} + h_{\text{unterer Kegel}})$ $V = \frac{1}{3} \cdot \left(\frac{5 \cdot \tan 72^{\circ}}{1 + \tan 72^{\circ}}\right)^{2} \cdot \pi \cdot 5 \operatorname{cm}^{3}$ $V = 74,57 \operatorname{cm}^{3}$	P 3.1			1	L3 K1
P 3.3 $V = V_{\text{oberer Kegel}} + V_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{oberer Kegel}} + \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot (h_{\text{oberer Kegel}} + h_{\text{unterer Kegel}})$ $V = \frac{1}{3} \cdot \left(\frac{5 \cdot \tan 72^{\circ}}{1 + \tan 72^{\circ}}\right)^{2} \cdot \pi \cdot 5 \text{ cm}^{3}$ $V = 74,57 \text{ cm}^{3}$	P 3.2	$\Leftrightarrow d(\alpha) = \tan \alpha \cdot (5 \operatorname{cm} - d(\alpha))$ $\Leftrightarrow d(\alpha) = 5 \cdot \tan \alpha \operatorname{cm} - d(\alpha) \cdot \tan \alpha$	$0^{\circ}[; 0 \text{ cm} < d(\alpha) < 5 \text{ cm}$		L4 K2 K5
P 3.3 $V = V_{\text{oberer Kegel}} + V_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{oberer Kegel}} + \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot h_{\text{unterer Kegel}}$ $V = \frac{1}{3} \cdot d(72^{\circ})^{2} \cdot \pi \cdot (h_{\text{oberer Kegel}} + h_{\text{unterer Kegel}})$ $V = \frac{1}{3} \cdot \left(\frac{5 \cdot \tan 72^{\circ}}{1 + \tan 72^{\circ}}\right)^{2} \cdot \pi \cdot 5 \text{ cm}^{3}$ $V = 74,57 \text{ cm}^{3}$		$\Leftrightarrow d(\alpha) = \frac{1}{1 + \tan \alpha} cm$		2	
$V = \frac{1}{3} \cdot \left(\frac{5 \cdot \tan 72^{\circ}}{1 + \tan 72^{\circ}}\right)^{2} \cdot \pi \cdot 5 \text{ cm}^{3}$ $V = 74,57 \text{ cm}^{3}$	P 3.3		I	2	L2 K2 K5
		_	$V = 74,57 \text{cm}^3$	2	
				19	

Abschlussprüfung 2008

an den Realschulen in Bayern

R4/R6

3 P

4 P

2 P

Mathematik I Haupttermin Aufgabe A 1

- A 1.0 Gegeben ist die Funktion f mit der Gleichung $y = 2 \cdot \log_3(x+1) 2$ mit $G = IR \times IR$.
- A 1.1 Geben Sie die Definitionsmenge der Funktion f sowie die Gleichung der Asymptote h an und zeichnen Sie den Graphen zu f für x ∈ [-0,5;8] in ein Koordinatensystem.
 Für die Zeichnung: Längeneinheit 1 cm; -3 ≤ x ≤ 9; -4 ≤ y ≤ 7.

A 1.2 Der Graph der Funktion f wird durch Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} a \\ 4 \end{pmatrix}$ mit $a \in \mathbb{R}$ auf den Graphen der Funktion f' abgebildet. Der Punkt

P'(0|4) liegt auf dem Graphen zu f'.

Berechnen Sie den Wert von a.

Ermitteln Sie sodann die Gleichung der Funktion f' durch Rechnung und zeichnen Sie den Graphen zu f' in das Koordinatensystem zu 1.1 ein.

A 1.3 Punkte $A_n(x \mid 2 \cdot \log_3(x+1) - 2)$ auf dem Graphen zu f und Punkte $C_n(x \mid 2 \cdot \log_3(x+3) + 2)$ auf dem Graphen zu f' haben dieselbe Abszisse x und sind für x > -1 zusammen mit Punkten B_n und D_n die Eckpunkte von Rauten $A_nB_nC_nD_n$. Es gilt: $\overline{B_nD_n} = 3$ LE .

Zeichnen Sie die Rauten $A_1B_1C_1D_1$ für x=0 und $A_2B_2C_2D_2$ für x=5 in das Koordinatensystem zu 1.1 ein.

A 1.4 Zeigen Sie rechnerisch, dass für die Koordinaten der Diagonalenschnittpunkte M_n der Rauten $A_nB_nC_nD_n$ in Abhängigkeit von der Abszisse x der Punkte A_n und C_n gilt:

$$M_n(x | log_3(x^2 + 4x + 3))$$
. 2 P

- A 1.5 Der Diagonalenschnittpunkt M₃ der Raute A₃B₃C₃D₃ liegt auf der x-Achse.

 Berechnen Sie die Koordinaten des Punktes C₃. Runden Sie auf zwei Stellen nach dem Komma.

 3 P
- A 1.6 Die Raute $A_4B_4C_4D_4$ hat den Flächeninhalt 10 FE. Berechnen Sie die x-Koordinate des Punktes C_4 auf zwei Stellen nach dem Komma gerundet.

Abschlussprüfung 2008

an den Realschulen in Bayern

R4/R6

Mathematik I Haupttermin Aufgabe A 2

A 2.0 Das gleichschenklige Trapez ABCD hat die parallelen Seiten [AB] und [CD] mit $\overline{AB} = 16 \text{ cm}$ und $\overline{CD} = 9 \text{ cm}$. Der Mittelpunkt der Seite [CD] ist der Punkt E, der Mittelpunkt der Seite [AB] ist der Punkt F. Es gilt: $\overline{EF} = 7 \text{ cm}$.

Das gleichschenklige Trapez ABCD ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Punkt E liegt. Es gilt: $\overline{ES} = 10 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Punkte E und F auf der Schrägbildachse liegen sollen.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

2 P

A 2.2 Berechnen Sie das Maß φ des Winkels SFE und die Länge der Strecke [SF].

[Ergebnisse: $\phi = 55,01^{\circ}$; $\overline{SF} = 12,21 \text{ cm}$]

2 P

1 P

A 2.3 Punkte M_n liegen auf der Strecke [SF]. Die Punkte M_n sind die Mittelpunkte der Trapezseiten $[P_nQ_n]$ von Trapezen DCQ_nP_n mit $P_n \in [AS]$ und $Q_n \in [BS]$. Die Winkel FEM_n haben das Maß ϵ mit $\epsilon \in [0^\circ; 90^\circ[$.

Zeichnen Sie das Trapez DCQ₁P₁ für $\varepsilon = 65^{\circ}$ in das Schrägbild zu 2.1 ein.

A 2.4 Zeigen Sie rechnerisch, dass für die Länge der Strecken $[SM_n]$ in Abhängigkeit von ϵ gilt:

$$\overline{SM}_{n}(\varepsilon) = \frac{10 \cdot \cos \varepsilon}{\sin(55,01^{\circ} + \varepsilon)} \text{ cm}.$$

A 2.5 Das Trapez DCQ₂P₂ ist ein Rechteck.

Berechnen Sie das zugehörige Winkelmaß $\,\epsilon\,.$

[Teilergebnis:
$$\overline{P_n Q_n}(\epsilon) = \frac{13,10 \cdot \cos \epsilon}{\sin(55,01^\circ + \epsilon)} \text{ cm}$$
] 5 P

A 2.6 Unter den Höhen $[EM_n]$ der Trapeze DCQ_nP_n hat die Höhe $[EM_0]$ des Trapezes DCQ_0P_0 die minimale Länge.

Berechnen Sie das zugehörige Winkelmaß ε.

Ermitteln Sie sodann durch Rechnung, in welchem Verhältnis das Volumen der Pyramide ABCDS durch die von den Eckpunkten des Trapezes DCQ_0P_0 festgelegte Ebene geteilt wird.

Abschlussprüfung 2008

an den Realschulen in Bayern

R4/R6

Mathematik I Haupttermin Aufgabe B 1

- B 1.0 Gegeben ist die Funktion f mit der Gleichung $y = -\left(\frac{1}{2}\right)^{x+4} + 2$ mit $\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$.
- B 1.1 Geben Sie die Definitionsmenge und die Wertemenge der Funktion f sowie die Gleichung der Asymptote h an.
- B 1.2 Tabellarisieren Sie die Funktion f für $x \in [-7; 2]$ mit $\Delta x = 1$ auf zwei Stellen nach dem Komma gerundet und zeichnen Sie den Graphen zu f in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-8 \le x \le 3$; $-7 \le y \le 4$. 2 P

B 1.3 Der Graph der Funktion f wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k = -2 auf den Graphen der Funktion f' abgebildet.

Zeigen Sie rechnerisch, dass die Funktion f' die Gleichung $y = \left(\frac{1}{2}\right)^{x+3} - 4$ besitzt und zeichnen Sie den Graphen zu f' in das Koordinatensystem zu 1.2 ein.

- B 1.4 Punkte A_n auf dem Graphen zu f und Punkte B_n auf dem Graphen zu f' haben dieselbe Abszisse x und sind für x > -5 zusammen mit Punkten C_n die Eckpunkte von gleichschenklig-rechtwinkligen Dreiecken $A_nB_nC_n$ mit den Hypotenusen $[A_nB_n]$. Zeichnen Sie die Dreiecke $A_1B_1C_1$ für x = -3 und $A_2B_2C_2$ für x = -1 in das Koordinatensystem zu 1.2 ein.
- B 1.5 Zeigen Sie durch Rechnung, dass für den Flächeninhalt A der Dreiecke $A_nB_nC_n$ in Abhängigkeit von der Abszisse x der Punkte A_n und B_n gilt:

$$A(x) = \left(-3 \cdot \left(\frac{1}{2}\right)^{x+5} + 3\right)^2 FE$$
.

- B 1.6 Das Dreieck A₃B₃C₃ hat den Flächeninhalt 2,25 FE.

 Berechnen Sie die Koordinaten des Punktes B₃.

 2 P
- B 1.7 Begründen Sie, dass die y-Koordinate der Punkte C_n nicht den Wert -1 annehmen kann.

Abschlussprüfung 2008

an den Realschulen in Bayern

R4/R6

Mathematik I

Haupttermin

Aufgabe B 2

B 2.0 Die Raute ABCD mit den Diagonalen [AC] und [BD] ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M der Raute ABCD liegt.

Es gilt: $\overline{AC} = 14 \text{ cm}$; $\overline{BD} = 10 \text{ cm}$; $\overline{MS} = 5 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Diagonale [AC] auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt:
$$q = \frac{1}{2}$$
; $\omega = 45^{\circ}$.

2 P

B 2.2 Auf der geradlinigen Verlängerung der Kante [CS] über den Punkt S hinaus liegen Punkte E_n . Die Punkte E_n sind die Spitzen von Pyramiden ABCD E_n mit den Höhen $[E_nF_n]$, deren Fußpunkte F_n auf der Halbgeraden [MA liegen. Die Strecken [MS] und [ME_n] schließen Winkel SME_n mit dem Maß ϕ ein.

Zeichnen Sie die Pyramide $ABCDE_1$ für $\phi = 30^\circ$ und ihre Höhe $[E_1F_1]$ in das Schrägbild zu 2.1 ein.

Für alle Pyramiden ABCDE_n gilt: $\phi \in]0^{\circ};54,46^{\circ}[$.

Begründen Sie die obere Intervallgrenze.

3 P

B 2.3 Zeigen Sie durch Rechnung, dass für die Länge der Strecken [ME_n] in Abhängigkeit von φ gilt:

$$\overline{\text{ME}}_{\text{n}}(\phi) = \frac{4.07}{\sin(125.54^{\circ} + \phi)} \text{ cm}.$$

B 2.4 Ermitteln Sie rechnerisch das Volumen V der Pyramiden $ABCDE_n$ in Abhängigkeit von ϕ .

[Ergebnis:
$$V(\varphi) = \frac{94,97 \cdot \cos \varphi}{\sin(125,54^{\circ} + \varphi)} \text{ cm}^{3}$$
]

B 2.5 Die Pyramide ABCDE₂ hat das Volumen 210 cm³.
Berechnen Sie das zugehörige Winkelmaß φ.

3 P

B 2.6 Die Spitze E₀ der Pyramide ABCDE₀ liegt senkrecht über dem Punkt A. Berechnen Sie das Maß φ des Winkels SME₀.

an den Realschulen in Bayern

Mathematik I

Haupttermin

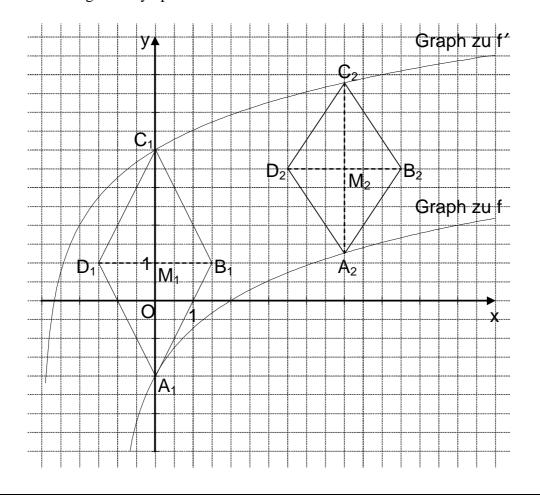
Aufgabe A 1

Lösungsmuster und Bewertung

FUNKTIONEN

A 1.1 $\mathbb{D}_f = \{x \mid x > -1\}$

Gleichung der Asymptote h: x = -1


 $x \in \mathbb{R}$

 $G = IR \times IR$

L4

K4

L4

3

A 1.2 $\overrightarrow{OP'} = \overrightarrow{OP} \oplus \overrightarrow{v}$

 \Rightarrow a = -2

$$\begin{pmatrix} 0 \\ 4 \end{pmatrix} = \begin{pmatrix} x \\ 2 \cdot \log_3(x+1) - 2 \end{pmatrix} \oplus \begin{pmatrix} a \\ 4 \end{pmatrix}$$

$$x>-1$$
; $x\in \mathbb{R}$; $a\in \mathbb{R}$

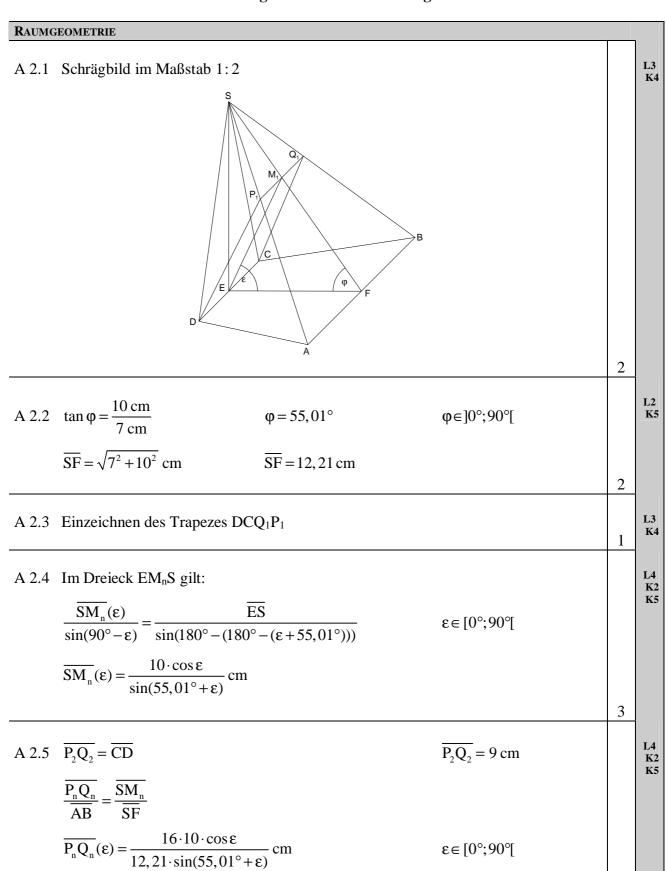
$$\overrightarrow{v} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ 2 \cdot \log_3(x+1) - 2 \end{pmatrix} \oplus \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

$$G = IR \times IR ; x > -1; x \in IR$$

L4 K5

	f': $y = 2 \cdot \log_3(x+3) + 2$	$\mathbb{G} = \mathbb{I}\mathbb{R} \times \mathbb{I}\mathbb{R}$		
	Einzeichnen des Graphen zu f'		4	L4 K4
A 1.3	Einzeichnen der Rauten $A_1B_1C_1D_1$ und $A_2B_2C_2D_2$		2	L3 K4
A 1.4	$M_{n}\left(\frac{x+x}{2}\left \frac{2 \cdot \log_{3}(x+1) - 2 + 2 \cdot \log_{3}(x+3) + 2}{2}\right.\right)$	$x > -1$; $x \in \mathbb{R}$		L4 K5
	$M_n(x \log_3(x+1) + \log_3(x+3))$ $M_n(x \log_3(x^2 + 4x + 3))$			
	1.1 _n (.1,1083 (.1 1.11.10))		2	
A 1.5	Für die y-Koordinate des Punktes M ₃ gilt:			L4 K2 K5
	$\log_3(x^2 + 4x + 3) = 0$	$x > -1$; $x \in \mathbb{R}$		KS
	$\Leftrightarrow (x = -3, 41 \lor) x = -0,59$	$\mathbb{L} = \{-0, 59\}$		
	$C_3(-0,59 3,60)$		3	
A 1.6	$A(x) = \frac{1}{2} \cdot 3 \cdot \left[2 \cdot \log_3(x+3) + 2 - \left(2 \cdot \log_3(x+1) - 2 \right) \right] FE$	$x > -1$; $x \in \mathbb{R}$		L4 K2 K5
	$A(x) = \left(6 + 3 \cdot \log_3 \frac{x+3}{x+1}\right) FE$			
	$6 + 3 \cdot \log_3 \frac{x+3}{x+1} = 10$	$x > -1$; $x \in \mathbb{R}$		
	\Leftrightarrow $x = -0.40$	$\mathbb{L} = \{-0, 40\}$	3	
			17	


an den Realschulen in Bayern

Mathematik I

Haupttermin

Aufgabe A 2

Lösungsmuster und Bewertung

$$\overline{P_nQ_n}(\epsilon) = \frac{13,10 \cdot \cos\epsilon}{\sin(55,01^\circ + \epsilon)} \operatorname{cm}$$

$$\frac{13,10 \cdot \cos\epsilon}{\sin(55,01^\circ + \epsilon)} = 9$$

$$\cdots$$

$$\Leftrightarrow \epsilon = 47,97^\circ$$

$$\overline{L} = \{47,97^\circ\}$$

$$A 2.6 \text{ Für das Trapez DCQ}_0P_0 \text{ gilt: } EM_0 \perp SF.$$
Die minimale Länge $\overline{EM_0}$ ergibt sich für $\epsilon + 55,01^\circ = 90^\circ \Leftrightarrow \epsilon = 34,99^\circ.$

$$V_{\text{Pyramide ABCDS}} = \frac{1}{3} \cdot \left(\frac{\overline{AB} + \overline{CD}}{2} \right) \cdot \overline{EF} \cdot \overline{ES}$$

$$V_{\text{Pyramide ABCDS}} = 291,67 \text{ cm}^3$$

$$V_{\text{Pyramide ABCDS}} = 291,67 \text{ cm}^3$$

$$V_{\text{Pyramide DCQ}_0P_0S} = \frac{1}{3} \cdot \left(\frac{\overline{P_0Q_0} + \overline{CD}}{2} \right) \cdot \overline{EM_0} \cdot \overline{SM_0}$$

$$\overline{P_0Q_0} = 10,73 \text{ cm}$$

$$\cos 34,99^\circ = \frac{\overline{EM_0}}{\overline{EF}}$$

$$\overline{SM_0} = 8,19 \text{ cm}$$

$$V_{\text{Pyramide ABCDS}} - V_{\text{Pyramide DCQ}_0P_0S} = 137,35 \text{ cm}^3$$

$$\left(V_{\text{Pyramide ABCDS}} - V_{\text{Pyramide DCQ}_0P_0S} = 137,35 \text{ cm}^3$$

$$\left(V_{\text{Pyramide ABCDS}} - V_{\text{Pyramide DCQ}_0P_0S} \right) : V_{\text{Pyramide DCQ}_0P_0S} = 137,35 : 154,32$$

an den Realschulen in Bayern

Mathematik I

Haupttermin

Aufgabe B 1

Lösungsmuster und Bewertung

FUNKTIONEN

 $B 1.1 \quad ID_f = IR$

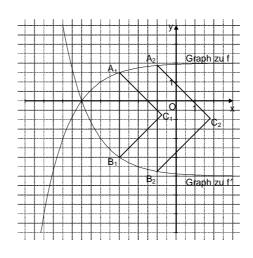
 $W_f = \{ y \mid y < 2 \}$

Gleichung der Asymptote h: y = 2

 $y \in \mathbb{R}$

 $G = IR \times IR$

2


B 1.2

X	II			-4						2
$-\left(\frac{1}{2}\right)^{x+4} + 2$	-6	-2	0	1	1,5	1,75	1,88	1,94	1,97	1,98

Zeichnung im Maßstab 1:2

L4

L4

2

 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \mathbf{e} \begin{pmatrix} x \\ -\left(\frac{1}{2}\right)^{x+4} + 2 \end{pmatrix}$ $\Leftrightarrow \qquad \mathbf{x}' = \mathbf{x}$ $\wedge \qquad \mathbf{y}' = -2 \cdot \left[-\left(\frac{1}{2}\right)^{x+4} + 2 \right]$ $\Rightarrow \qquad \mathbf{y}' = 2 \cdot \left(\frac{1}{2}\right)^{x'+4} - 4$ B 1.3

$$\mathbb{G} = \mathbb{I}\mathbb{R} \times \mathbb{I}\mathbb{R} \; ; \; x \in \mathbb{I}\mathbb{R}$$

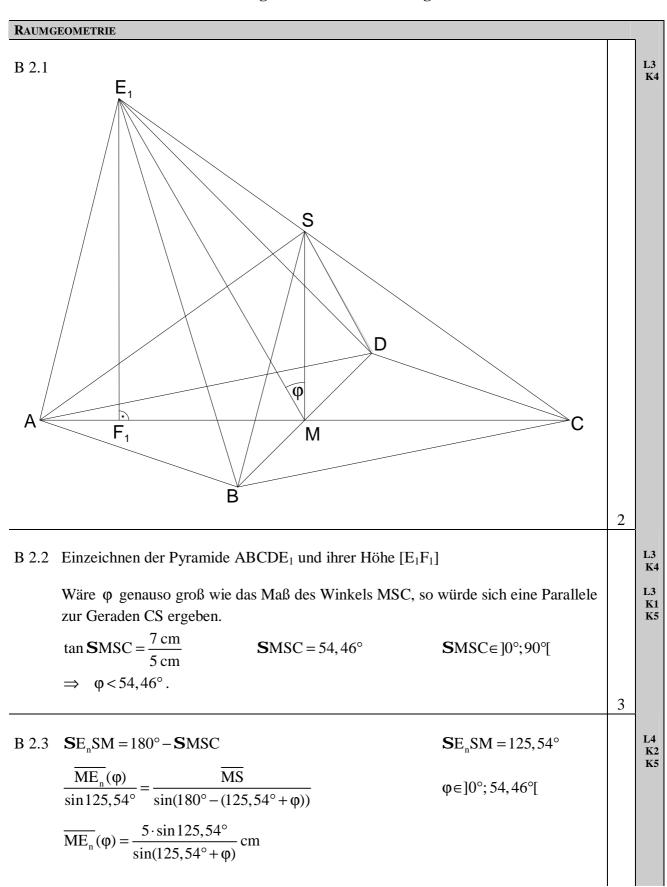
$$\Rightarrow$$
 y'=2\left(\frac{1}{2}\right)^{x'+4}-4

$$\Leftrightarrow y' = \left(\frac{1}{2}\right)^{x'+3} - 4$$

f':
$$y = \left(\frac{1}{2}\right)^{x+3} - 4$$

$$G = IR \times IR$$

Einzeichnen des Graphen zu f'


B 1.4	Einzeichnen der Dreiecke A ₁ B ₁ C ₁ und A ₂ B ₂ C ₂		2	L3 K4
В 1.5	$\overline{A_n B_n}(x) = \left[-\left(\frac{1}{2}\right)^{x+4} + 2 - \left(\left(\frac{1}{2}\right)^{x+3} - 4\right) \right] LE$	$x > -5$; $x \in \mathbb{R}$		L4 K2 K5
	$\overline{A_n B_n}(x) = \left[-\frac{1}{16} \cdot \left(\frac{1}{2}\right)^x - \frac{1}{8} \cdot \left(\frac{1}{2}\right)^x + 6 \right] LE$			
	$\overline{A_n B_n}(x) = \left[-\frac{3}{16} \cdot \left(\frac{1}{2} \right)^x + 6 \right] LE$	$A = \left(\frac{\overline{A_n B_n}}{2}\right)^2$		
	$A(x) = \left(-3 \cdot \left(\frac{1}{2}\right)^{x+5} + 3\right)^2 FE$	$x > -5$; $x \in \mathbb{R}$	4	
			4	
B 1.6	$\left(-3 \cdot \left(\frac{1}{2}\right)^{x+5} + 3\right)^2 = 2,25$	$x > -5$; $x \in \mathbb{R}$		L4 K5
	$\Leftrightarrow (x = -5, 58 \lor) x = -4$	$\mathbb{L} = \{-4\}$		
	$B_3(-4 -2)$		2	
B 1.7	Da die Punkte A_n und B_n dieselbe Abszisse x haben, stimm der Punkte C_n mit der y-Koordinate der Mittelpunkte M_n düberein.	•		L4 K1 K5
	$M_{n} \left(\frac{x+x}{2} \left \frac{1}{2} \cdot \left(-\left(\frac{1}{2}\right)^{x+4} + 2 + \left(\frac{1}{2}\right)^{x+3} - 4 \right) \right) \right)$	$x > -5$; $x \in \mathbb{R}$		
	$\mathbf{M}_{\mathbf{n}}\left(\mathbf{x}\left \left(\frac{1}{2}\right)^{\mathbf{x}+5}-1\right.\right)$			
	$\left(\frac{1}{2}\right)^{x+5} - 1 = -1$	$x > -5$; $x \in \mathbb{R}$		
	$\Leftrightarrow \left(\frac{1}{2}\right)^{x+5} = 0$	$\mathbf{IL} = 0$		
	(~)		2	
			17	

Lösungsvorlage zu Verzerrungen der Zeichnungen führen kann.

an den Realschulen in Bayern

Mathematik I Haupttermin Aufgabe B 2

Lösungsmuster und Bewertung

$$\overline{ME_n}(\phi) = \frac{4,07}{\sin(125,54^\circ + \phi)} \, cm$$

$$B \ 2.4 \quad V = \frac{1}{3} \cdot \frac{1}{2} \cdot \overline{AC} \cdot \overline{BD} \cdot \overline{E_nF_n}$$

$$\sin(90^\circ - \phi) = \frac{\overline{E_nF_n}(\phi)}{\overline{ME_n}(\phi)} \iff \overline{E_nF_n}(\phi) = \overline{ME_n}(\phi) \cdot \cos\phi \qquad \phi \in]0^\circ, 54, 46^\circ [$$

$$\overline{E_nF_n}(\phi) = \frac{4,07 \cdot \cos\phi}{\sin(125,54^\circ + \phi)} \, cm \qquad \phi \in]0^\circ, 54, 46^\circ [$$

$$V(\phi) = \frac{1}{3} \cdot \frac{1}{2} \cdot 14 \cdot 10 \cdot \frac{4,07 \cdot \cos\phi}{\sin(125,54^\circ + \phi)} \, cm^3 \qquad \phi \in]0^\circ, 54, 46^\circ [$$

$$V(\phi) = \frac{94,97 \cdot \cos\phi}{\sin(125,54^\circ + \phi)} \, cm^3$$

$$B \ 2.5 \qquad \frac{94,97 \cdot \cos\phi}{\sin(125,54^\circ + \phi)} \, cm^3$$

$$B \ 2.6 \quad \tan SE_0 CA = \frac{\overline{AE_0}}{\overline{AC}}$$

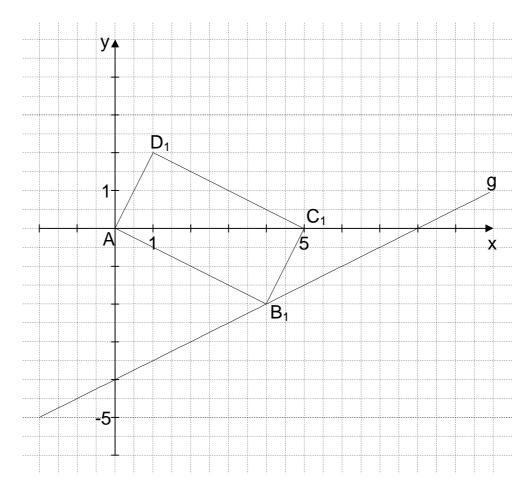
$$\tan(180^\circ - (90^\circ + 54, 46^\circ)) = \frac{\overline{AE_0}}{14 \, cm} \qquad \overline{AE_0} = 10,00 \, cm$$

$$\phi = 90^\circ - SE_0 MA$$

$$\tan SE_0 MA = \frac{\overline{AE_0}}{\overline{AM}} \qquad \tan SE_0 MA \in [35,54^\circ; 90^\circ]$$

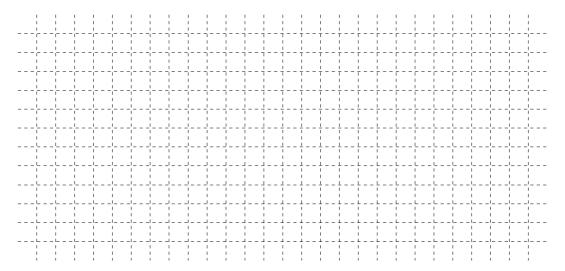
$$\phi = 34,99^\circ$$

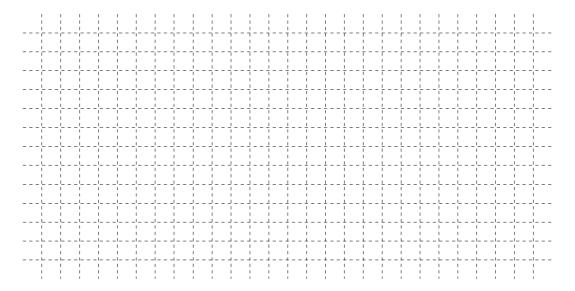
$$3 \quad 17$$

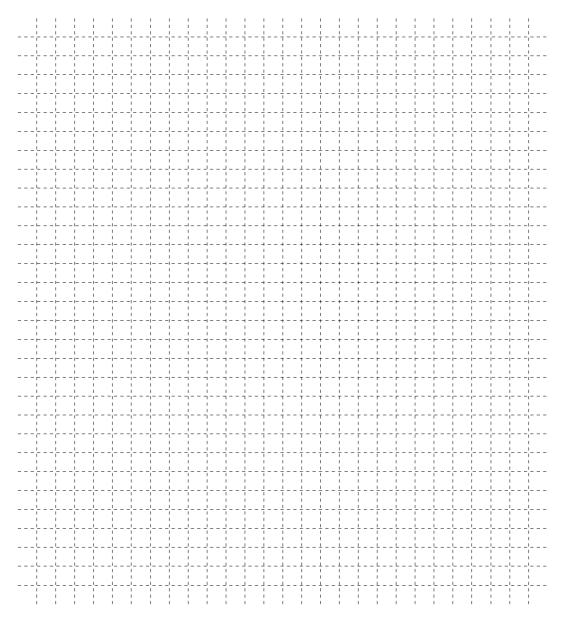

Abschlussprüfung 2008 an den Realschulen in Bayern

R4/R6

Mathematik I		Na	Aufgabe P 1					
Name:		Vorname:						
Klasse	:	Platzziffer:		Punkte	kte:			
P 1.0	Die nebenstehende T Aussterben bedrohte seit 1987 kann mit Form y = a·b ^x (G = beschrieben werden. Jahre seit 1987, y be Sägefische. Biologer zukünftige Entwicklution beschrieben wer	en Sägefische. En einer Exponen $: \mathbb{R}_0^+ \times \mathbb{R}_0^+; \ a \in \mathbb{R}$ Dabei steht x für schreibt die Anzan gehen davon aus ung durch diese E	Die Entwicklung itialfunktion der $N ; b \in \mathbb{R}^+ \setminus \{1\}$ or die Anzahl der ahl der lebenden is, dass auch die	1987 1992 1997 2002	Anzahl der Sägefische 60 000 29 056 14 071 6814 3 300			
P 1.1	Ermitteln Sie die zug drei Stellen nach den	_	nsgleichung. (Ru	unden Sie den '	Wert für b auf	2 P		
P 1.2	Geben Sie an, um wi	e viel Prozent die	e Anzahl der Säg	efische jährlich	gesunken ist.	1 P		
P 1.3	Geben Sie die voraus							
	auf Hunderter.		 			1 P		
P 1.4	Berechnen Sie, in werstmals unterschritte		Anzahl von 500) Sägefischen v	voraussichtlich	1 P		

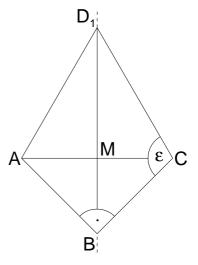

1 P


P 2.0 Der Punkt A(0|0) ist gemeinsamer Eckpunkt von Rechtecken $AB_nC_nD_n$, wobei die Seiten $[AB_n]$ doppelt so lang wie die Seiten $[B_nC_n]$ sind. Die Punkte B_n mit der Abszisse x liegen auf der Geraden g mit der Gleichung y=0,5x-4 ($G=\mathbb{R}\times\mathbb{R}$).


- P 2.1 Zeichnen Sie das Rechteck $AB_2C_2D_2$ für x = 6 in das Koordinatensystem zu 2.0 ein.
- $P\ 2.2$ Unter den Rechtecken $AB_nC_nD_n$ hat das Rechteck $AB_0C_0D_0$ den minimalen Flächeninhalt.

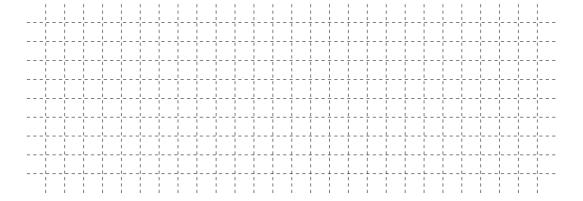
Berechnen Sie den Flächeninhalt des Rechtecks AB₀C₀D₀. 4 P

 $P\ 2.3$ Berechnen Sie die Koordinaten der Punkte C_n in Abhängigkeit von der Abszisse x der Punkte $B_n.$

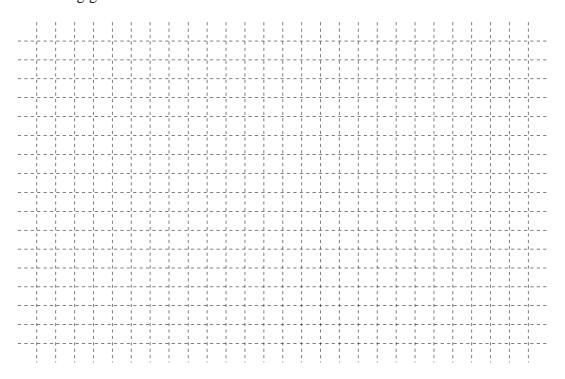


P 3.0 Gegeben ist das gleichschenklig-rechtwinklige Dreieck ABC mit der 4 cm langen Hypotenuse [AC]. Der Mittelpunkt der Hypotenuse [AC] ist der Punkt M.

Punkte D_n liegen auf der Geraden MB, wobei die Winkel D_nCB das Maß ϵ mit $\epsilon \in]45^\circ;135^\circ[$ haben.


Die Punkte A, B, C und D_n sind die Eckpunkte von konvexen Drachenvierecken $ABCD_n$.

Die nebenstehende Zeichnung zeigt das Drachenviereck $ABCD_1$ für $\epsilon = 105^{\circ}$.


P 3.1 Berechnen Sie die Länge der Strecken [D_nC] in Abhängigkeit von ε.

2 P

P 3.2 Die Drachenvierecke ABCD_n rotieren um die Gerade BD_n.

Bestimmen Sie durch Rechnung das Volumen V der entstehenden Rotationskörper in Abhängigkeit von ϵ .

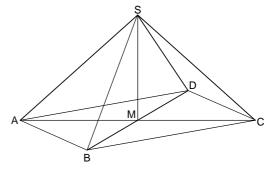
Abschlussprüfung 2008 an den Realschulen in Bayern

R4/R6

Math	ematik I Na	achtermin	Aufgabe C 1	Ĺ
C 1.0	Gegeben ist die Funktion f mit der G	leichung $y = 2^x - 6$ mit $G = \mathbb{R}$	×IR.	
C 1.1	Geben Sie die Definitionsmenge ur Gleichung der Asymptote han.	nd die Wertemenge der Funkt	ion f sowie die 2 I	P
C 1.2	Tabellarisieren Sie die Funktion f fü dem Komma gerundet und zeichne system.			
	Für die Zeichnung: Längeneinheit 1	cm; $-5 \le x \le 6$; $-7 \le y \le 3$.	2 I	P
C 1.3	Der Graph der Funktion f wird dur Affinitätsachse und dem Affinitätsm der Gleichung $y = 2^{x-1} + c$ (k, $c \in \mathbb{R}$) Ermitteln Sie die Werte für k und Koordinatensystem zu 1.2 ein. [Ergebnis: $c = -3$]	aßstab k auf den Graphen der) abgebildet.	Funktion f' mit	P
C 1.4	Der Graph zu f kann auch durch I vektor \overrightarrow{v} auf den Graphen zu f' abg Ermitteln Sie die Koordinaten des Ve	ebildet werden.	Verschiebungs-	P
C 1.5	Punkte A_n auf dem Graphen zu für dieselbe Abszisse x und sind zusamm Rechtecken $A_nB_nC_nD_n$. Es gilt: y_{A_n} < Zeichnen Sie die Rechtecke $A_1B_1C_1$ Koordinatensystem zu 1.2 ein. Ermitteln Sie rechnerisch, für welch gibt. Runden Sie auf zwei Stellen nach	men mit Punkten B_n und C_n die y_{D_n} und $\overline{A_nD_n} = 0,5 \cdot \overline{A_nB_n}$. D_1 für $x = -2$ und $A_2B_2C_2D_2$ in Belegungen von x es Recht	Eckpunkte von für x =1 in das	P
C 1.6	Zeigen Sie durch Rechnung, dass für Abhängigkeit von der Abszisse x der $u(x) = (-3 \cdot 2^x + 18)$ LE. Begründen Sie sodann, dass der Um	Punkte A _n gilt:	stets kleiner als	
	18 LE ist.		3 I	P
C 1.7	Das Rechteck A ₃ B ₃ C ₃ D ₃ hat den Fläc Berechnen Sie den zugehörigen Wert		2 I	P

Abschlussprüfung 2008

an den Realschulen in Bayern


R4/R6

Mathematik I **Nachtermin** Aufgabe C 2

C 2.0 Fast 4000 Jahre lang war die Cheops-Pyramide in Ägypten das höchste Bauwerk der Erde.

Die nebenstehende Skizze zeigt ein Modell dieser Pyramide: Die Spitze S liegt senkrecht über dem Diagonalenschnittpunkt M der quadratischen Grundfläche ABCD mit der Seitenlänge AB = 230 m.

Es gilt: $\overline{MS} = 146 \text{ m}$.

C 2.1 Berechnen Sie die Länge der Diagonalen [AC] auf Meter gerundet und zeichnen Sie das Schrägbild der Pyramide ABCDS im Maßstab 1:2500, wobei die Diagonale [AC] auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt:
$$q = \frac{1}{2}$$
; $\omega = 30^{\circ}$.

3 P

C 2.2 Der Winkel SQM ist der Neigungswinkel der Seitenfläche BCS gegenüber der Grundfläche der Pyramide.

Zeichnen Sie das Dreieck QSM in das Schrägbild zu 2.1 ein und berechnen Sie das Maß δ des Winkels SQM. Runden Sie auf eine Stelle nach dem Komma.

[Ergebnis: $\delta = 51.8^{\circ}$] 2 P

C 2.3 Stellt man sich zur Grundfläche der Pyramide parallele Ebenen vor, die die Kanten der Pyramide in den Punkten $K_n \in [AS]$, $E_n \in [BS]$, $O_n \in [CS]$ und $P_n \in [DS]$ schneiden, so entstehen Quadrate K_nE_nO_nP_n mit den Diagonalenschnittpunkten N_n. Es gilt: $MN_n = x \text{ m mit } 0 < x < 146; x \in \mathbb{R}$.

Zeichnen Sie das Quadrat $K_1E_1O_1P_1$ für x = 80 maßstabsgetreu in das Schrägbild zu 2.1 ein und zeigen Sie durch Rechnung, dass für den Flächeninhalt A der Quadrate K_nE_nO_nP_n in Abhängigkeit von x gilt (Werte auf zwei Stellen nach dem Komma gerundet):

$$A(x) = 2.48 \cdot (146 - x)^2 \text{ m}^2.$$

C 2.4 Das Quadrat K₂E₂O₂P₂ hat den Flächeninhalt 1000 m². Berechnen Sie den zugehörigen Wert von x. Runden Sie auf Ganze.

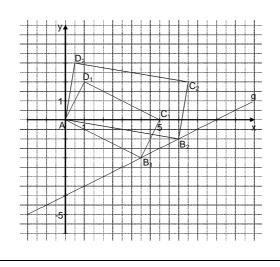
2 P

C 2.5 Für das Quadrat $K_3E_3O_3P_3$ gilt: x = 100. Ermitteln Sie rechnerisch, wie viel Prozent des Volumens der Pyramide ABCDS sich unterhalb der Schnittfläche befinden.

3 P

C 2.6 Um die Lage einer Grabkammer zu bestimmen, wurden folgende Überlegungen angestellt: Im Dreieck ABS ist der Mittelpunkt der Seite [AB] der Punkt F. Punkte Gn liegen auf der Höhe [FS] des Dreiecks ABS.

Berechnen Sie die Länge der Strecken [G_nM] in Abhängigkeit vom Maß γ der Winkel G_nMF. Runden Sie auf eine Stelle nach dem Komma.


an den Realschulen in Bayern

Mathematik I **Nachtermin** Aufgaben P1-3

Lösungsmuster und Bewertung

FUNKTIONEN L4 $60000 = a \cdot b^0$ P 1.1 $a \in \mathbb{I}\mathbb{N}$; $b \in \mathbb{I}\mathbb{R}^+ \setminus \{1\}$ \Rightarrow a = 60000 K5 $29056 = 60000 \cdot b^5$ $b \in \mathbb{R}^+ \setminus \{1\}$ $\mathbb{L} = \{0,865\}$ \Leftrightarrow b = 0.865 $\mathbf{G} = \mathbf{I}\mathbf{R}_0^+ \times \mathbf{I}\mathbf{R}_0^+$ Funktionsgleichung: $y = 60000 \cdot 0,865^x$ 2 P 1.2 Die Anzahl der Sägefische ist jährlich um 13,5% gesunken. L4 **K4** 1 L4 P 1.3 $y = 60000 \cdot 0,865^{28}$ y = 1034,19Im Jahr 2015 beträgt die Anzahl an Sägefischen voraussichtlich 1000. 1 L4 $500 = 60000 \cdot 0,865^{x}$ P 1.4 $x \in \mathbb{R}_0^+$ $\mathbb{L} = \{33, 01\}$ \Leftrightarrow x = 33,01 Im Jahr 2020 wird die Anzahl von 500 Sägefischen voraussichtlich erstmals unterschritten. 1 EBENE GEOMETRIE

P 2.1 Zeichnung im Maßstab 1:2

L3

$$\begin{array}{c} P \ 2.2 \quad Ermittlung \ der \ Koordinaten \ des \ Punktes \ B_0: \\ & y = 0,5x-4 \\ & \Delta y = -2x \\ \hline IL = \{(1,6 \mid -3,2)\} & B_0 \ (1,6 \mid -3,2) \\ & A_{Rechteck \ AB_i,C_i,D_0} = \sqrt{1,6^2 + (-3,2)^2} \cdot \frac{1}{2} \cdot \sqrt{1,6^2 + (-3,2)^2} \ FE \\ & A_{Rechteck \ AB_i,C_i,D_0} = \frac{1}{2} \cdot \left[I,6^2 + (-3,2)^2 \right] FE & A_{Rechteck \ AB_i,C_i,D_0} = 6,4 \ FE \\ \hline P \ 2.3 \quad \overrightarrow{OC_n} = \overrightarrow{OD_n} \odot \overrightarrow{Dn_n} \overrightarrow{OD_n} \xrightarrow{A} \overrightarrow{Bn_n} & \overrightarrow{AB_n} & \overrightarrow{AB$$

an den Realschulen in Bayern

Mathematik I

Nachtermin

Aufgabe C 1

Lösungsmuster und Bewertung

FUNKTIONEN

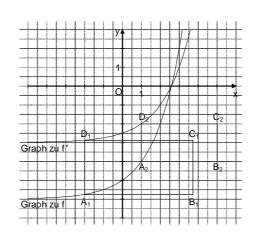
 $C 1.1 \quad \mathbb{ID}_f = \mathbb{IR}$

 $W_f = \{ y \mid y > -6 \}$

Gleichung der Asymptote h: y = -6

 $y \in \mathbb{R}$

 $G = IR \times IR$


2

C 1.2

X	-4	-3	-2	-1	0	1	2	3
2 ^x -6	-5,94	-5,88	-5,75	-5,5	- 5	-4	-2	2

Zeichnung im Maßstab 1:2

L4

2

C 1.3

 $x \in \mathbb{R}$; $x \in \mathbb{R}$; $k, c \in \mathbb{R}$

 \Rightarrow 0,5·2^x+c = k·2^x+k·(-6)

 \Rightarrow k = 0,5; c = -3

f': $y = 2^{x-1} - 3$

 $G = IR \times IR$

Einzeichnen des Graphen zu f'

L4 K4

3

C 1.4

$$\begin{pmatrix} x' \\ 2^{x'-1}-3 \end{pmatrix} = \begin{pmatrix} x \\ 2^x-6 \end{pmatrix} \oplus \begin{pmatrix} a \\ b \end{pmatrix}$$

$$x \in \mathbb{R}$$
; $x \in \mathbb{R}$; $a, b \in \mathbb{R}$

L4 **K5**

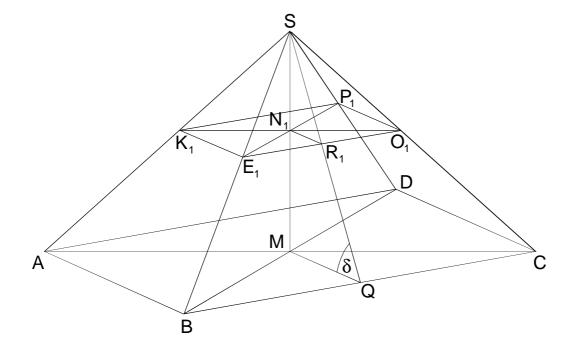
	$\Leftrightarrow \frac{x' = x + a}{\wedge 2^{x'-1} - 3 = 2^x - 6 + b}$ $\Rightarrow 2^{x+a-1} - 3 = 2^x - 6 + b$ $\Rightarrow a = 1; b = 3$	$\overrightarrow{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2	
C 1.5	Einzeichnen der Rechtecke A ₁ B ₁ C ₁ D ₁ und A ₂ B ₂ C ₂ D ₂			L3 K4
	$2^{x} - 6 = 2^{x-1} - 3$	$x \in IR$		L4 K2 K5
	$\Leftrightarrow x = 2,58$	$\mathbb{L} = \{2, 58\}$		
	$x < 2,58 \ (x \in \mathbb{R})$		3	
C 1.6	$\overline{A_n D_n}(x) = [2^{x-1} - 3 - (2^x - 6)] LE$	$x < 2,58; x \in IR$		L4 K2 K5
	$\overline{A_n D_n}(x) = (-0.5 \cdot 2^x + 3) LE$			
	, , , , , , , , , , , , , , , , , , ,	$x < 2,58; x \in IR$		
	$u(x) = 6 \cdot (-0.5 \cdot 2^{x} + 3) \text{ LE}$ $u(x) = (-3 \cdot 2^{x} + 18) \text{ LE}$			
	Für $x \in IR$ gilt: $2^x > 0$ und somit $-3 \cdot 2^x < 0 \iff -3 \cdot 2^x$ Daraus folgt, dass der Umfang der Rechtecke $A_n B_n C_n D_n$		3	L4 K1 K5
C 1.7	$A(x) = (-0, 5 \cdot 2^{x} + 3) \cdot [2 \cdot (-0, 5 \cdot 2^{x} + 3)] FE$	$x < 2,58; x \in \mathbb{R}$		L4 K2
	$A(x) = 2 \cdot (-0.5 \cdot 2^{x} + 3)^{2} \text{ FE}$			K5
	$2 \cdot (-0, 5 \cdot 2^{x} + 3)^{2} = 2$	$x < 2,58; x \in IR$		
	$\Leftrightarrow x = 2 \qquad (\lor \qquad x = 3)$	IL = {2}	2	
			17	

an den Realschulen in Bayern

Mathematik I **Nachtermin**

Aufgabe C 2

Lösungsmuster und Bewertung


RAUMGEOMETRIE

C 2.1 $\overline{AC} = \overline{AB} \cdot \sqrt{2}$

L3 **K4**

L2

C 2.2 Einzeichnen des Dreiecks QSM

$$\tan \delta = \frac{146 \text{ m}}{0.5 \cdot 230 \text{ m}}$$

$$\delta = 51.8^{\circ}$$

$$\delta \!\in\!]0^\circ;90^\circ[$$

 $\overline{N_{n}R_{n}} = \frac{\overline{MQ}}{\overline{MS}} \cdot \left(\overline{MS} - \overline{MN_{n}}\right)$

C 2.3 Einzeichnen des Quadrats K₁E₁O₁P₁

 $A = \overline{K_n E_n}^2$ $\overline{K_n E_n} = 2 \cdot \overline{N_n R_n}$

$$\frac{\overline{N_n R_n}}{\overline{MO}} = \frac{\overline{N_n S}}{\overline{MS}}$$

$$A = \left[2 \cdot \frac{\overline{MQ}}{\overline{MS}} \cdot \left(\overline{MS} - \overline{MN_n}\right)\right]^2$$

$$A = \left[\frac{\overline{AB}}{\overline{MS}} \cdot \left(\overline{MS} - \overline{MN_n} \right) \right]^2$$

2

3

L4

$A(x) = \left[\frac{230}{146} \cdot (146 - x)\right]^2 m^2$	$0 < x < 146$; $x \in \mathbb{R}$		
$A(x) = 2,48 \cdot (146 - x)^2 \text{ m}^2$		4	
C 2.4 $1000 = 2,48 \cdot (146 - x)^2$	$0 < x < 146$; $x \in \mathbb{R}$		L4 K5
$\Leftrightarrow x = 126 \qquad (\lor \qquad x = 166)$	$IL = \{126\}$	2	
C 2.5 $A(100) = 2,48 \cdot (146-100)^2 \text{ m}^2$			L2 K2 K5
$\frac{V_{\text{Pyramide ABCDS}} - V_{\text{Pyramide K}_3\text{E}_3\text{O}_3\text{P}_3\text{S}}}{V_{\text{Pyramide ABCDS}}} = \frac{\frac{1}{3} \cdot 230^2 \cdot 146 \text{ m}^3 - 1230^2 \cdot 146 \text{ m}^3 - 1230^2 \cdot 146 \text{ m}^3 - 1230^2 \cdot 1230^2 $	$\frac{\frac{1}{3} \cdot 2,48 \cdot (146 - 100)^2 \cdot (146 - 100) \text{ m}^3}{\frac{1}{3} \cdot 230^2 \cdot 146 \text{ m}^3}$		
$\frac{V_{\text{Pyramide ABCDS}} - V_{\text{Pyramide K}_3\text{E}_3\text{O}_3\text{P}_3\text{S}}}{V_{\text{Pyramide ABCDS}}} = 0,97$			
Der Anteil beträgt 97%.		3	
C 2.6 $\mathbf{S}MFG_n = \mathbf{S}SQM$	$SMFG_n = 51.8^{\circ}$		L4 K2 K5
$\frac{\overline{G_n M}(\gamma)}{\sin 51.8^{\circ}} = \frac{0.5 \cdot 230 \text{ m}}{\sin(180^{\circ} - (51.8^{\circ} + \gamma))}$	γ∈]0°;90°[KS
$\overline{G_n M}(\gamma) = \frac{0.5 \cdot 230 \cdot \sin 51.8^{\circ}}{\sin(128.2^{\circ} - \gamma)} \text{ m}$			
$\overline{G_nM}(\gamma) = \frac{90,4}{\sin(128,2^\circ - \gamma)} \text{ m}$		3	
		17	